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ABSTRACT 

DESIGN AND SYNTHESIS OF A NEW CLASS  
OF SELF-CROSS-LINKED POLYMER NANOGELS 

 
MAY 2011 

 
SIRIPORN JIWPANICH 

 
B.Sc., CHULALONGKORN UNIVERSITY 

 
M.Sc., CHULALONGKORN UNIVERSITY 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Sankaran Thayumanavan 

 
 

The design and engineering of nanoscopic drug delivery vehicles that stably 

encapsulate lipophilic drug molecules, transport their loaded cargo to specific target sites, 

and release their payload in a controlled manner are of great interest in therapeutic 

applications, especially for cancer chemotherapy. This dissertation focuses on chemically 

cross-linked, water-soluble polymer nanoparticles, termed nanogels, which constitute a 

promising scaffold and offer the potential to circumvent encapsulation stability issues.  A 

facile synthetic method for a new class of self-cross-linked polymer nanogels, 

synthesized by an intra/intermolecular disulfide cross-linking reaction in aqueous media, 

is described here.  This simple emulsion-free method affords noncovalent lipophilic guest 

encapsulation and surface functionalization that may allow for targeted delivery. The 

encapsulation stability of lipophilic molecules sequestered within these nanoscopic 

containers is evaluated by a fluorescent resonance energy transfer (FRET) based method 

developed by our research group. We demonstrate that the encapsulation stability of 
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noncovalently encapsulated guest molecules in disulfide cross-linked polymer nanogels 

can be tuned and that guest release can be achieved in response to a biologically relevant 

stimulus (GSH). In addition, varied hydrophobicity in the self-cross-linked nanogels 

affects the lipophilic loading capacity and encapsulation stability. We reveal that optimal 

loading capacity is limited by encapsulation stability, where over-loading of lipophilic 

molecules in the nanoscopic containers may cause undersirable leakage and severely 

compromise the viability of such systems for drug delivery and other biological 

applications. 
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CHAPTER 1 

 
INTRODUCTION 

The engineering and manufacturing of materials at the atomic and molecular 

scale, so called “nanotechnology” are of great interest for several applications, 

especially nanomedicine.(Allen and Culis 2004; Wagner, Dullaart et al. 2006) 

Nanotechnology has the potential to revolutionize cancer diagnosis and therapy 

bringing new hope to patients. This technology can be applied to drugs that are poorly 

water-soluble and therefore cannot be administered via the preferred route, or in some 

cases, at all.  

 Among the current cancer therapies, including surgical intervention, radiation 

and chemotherapeutic drugs, chemotherapy seems to be the primary method for cancer 

treatment. However, the bioavailability of these drugs is limited due to their 

hydrophobicity which requires a specific mode of delivery and higher doses.  Moreover, 

lack of control and specific targeting of these drugs often kills healthy cells and causes 

toxicity to the patient. Therefore, the development of a nanoscale targeting approach is 

required for delivery of chemotherapeutic agents which can selectively accumulate at 

the target tumor site. In this chapter, we briefly review the class of nanoscopic targeting 

drug delivery vehicles, particulary for cancer therapy, in term of structural design for 

lipophilic drug encapsulation and release.   

1.1 Passive and Active Targeting Drug Delivery 

Targeting mechanisms can be broadly classified into two categories, viz. active 

and passive. Passive targeting is based on the propensity of nanoscopic objects of 10-

 1



www.manaraa.com

 

200 nm size to extravasate into solid tumor tissues and prevent lymphatic drainage, the 

so-called enhanced permeation and retension (EPR) effect (Figure 1.1).(Matsumura and 

Maeda 1986) Early clinical data has shown that therapeutic nanoparticles can enhance 

efficacy in terms of improving pharmacokinetic and pharmacodynamics profiles, 

reducing side effects, and targeting for specific diseases.(Peer, Karp et al. 2007; Davis, 

Chen et al. 2008; Lee, Song et al. 2010) Thus the development of nanoparticles gains 

more attention, particularly for drug delivery applications which account for three-

quarters of all research activities and the nanomedicine market, especially in cancer 

chemotherapy.(Wagner, Dullaart et al. 2006; Farokhzad and Langer 2009)  

 

Figure 1.1: Cartoon represention of passive and active targeting mechanisms. 

Although the passive targeting approach is the primary mechanism for 

chemotherapeutic delivery, there are still some limitations. One is that the drug may not 

diffuse efficiently and the random nature of the approach makes it difficult to control 

the drug uptake pathway. This may cause multiple-drug resistance (MDR), a situation 

 2
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where the chemotherapy treatments fail due to the resistance of cancer cells towards one 

or more drugs.(Gottesman, Fojo et al. 2002; Ferrari 2005; Peer and Margalit 2006) 

MDR occurs because integral membrane proteins, known as MDR transporters, 

overexpressed on the surface of cancer cells can expel drugs from the cells which cause 

a lowering in the therapeutic effect and thus the cancer cells soon develop resistance to 

a variety of drugs.(Gottesman, Fojo et al. 2002) 

An alternative route to achieve cancer drug delivery and avoid the MDR effect 

is to engineer the nanocarriers in such a way that they have specific binding to the 

tumor cell surfaces which can facilite the internalization of nanocontainers and 

diffusion of the drug into cancer cells. This can be accomplished by conjugating 

nanocontainers, with encapsulated cancer therapeutics, to specific ligands that are 

complementary to the receptors overexpressed on a tumor cell surface, so called active 

targeting approach (Figure 1.1). These targeting ligands enable nanoparticles to bind 

specifically to cell-surface receptors and can enter cells by receptor-mediated 

endocytosis before the drug is released. Recent works comparing non-targeting and 

targeting nanoparticles have shown that targeted ligands play an important role in the 

enhancement of cellular uptake into cancer cells.(Torchilin 2005; Bartlett, Su et al. 

2007; Peer, Karp et al. 2007) For example, folate receptor-mediated cell uptake of 

doxorubicin-loaded liposomes into an MDR cell line has shown to be unaffected by P-

glycoprotein (Pgp)-mediated drug efflux.(Goren, Horowitz et al. 2000)  

1.2 Nanoscopic Drug Delivery  

Nanoscopic drug delivery vehicles are nanosized materials, with 10-200 nm 

diameters, that can carry lipophilic drugs and release them at a specific target site. Since 

 3
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the small molecule chemotherapeutics are water-insoluble and highly toxic due to the 

indiscriminate access to both healthy and cancerous cells, the versatile nanoscopic drug 

delivery vehicles, an alternative route to administer these drugs, should exhibit a few 

key characteristics: (i) the delivery vehicle should have a desirable and tunable particle 

size for the EPR effect; (ii) the nanocontainers should be able to incorporate lipophilic 

drug molecules and enhance the the aqueous solubility of these drugs; (iii) the 

nanocarriers should prevent the drug from degradation processes and premature release 

before they reach the target tumor site; (iv) the effective delivery vehicles should be 

able to cross biological barriers and release the drug into the tumor cells.(Davis, Chen et 

al. 2008)  

To date there have been some nanoscopic drug delivery vehicles which are 

clinically approved and several more that are under clinical investigation and 

development.(Peer, Karp et al. 2007)  In this chapter, we briefly review the family of 

nanocarriers including polymer-lipophilic drug conjuagates, metallic nanoparticles, 

dendrimers, liposomes, micelles, and polymeric cross-linked nonoparticles or nanogels.  

1.2.1 Polymer-Drug Conjugates 

The polymer-conjugated anticancer drug concept was introduced by Ringsdorf 

in 1975.(Ringsdorf 1975) This was considered the beginning of an era for the 

development of polymer therapeutics. Polymer-drug conjugates consist of a 

biocompatible polymeric carrier with attached low-molecular weight biologically active 

molecules through a bioresponsive or cleavable linker. By using this method, not only 

can a drug be covalently linked to the polymer backbone, but also a targeting ligand can 

be attached, as a guiding agent, onto the same polymer as shown in Figure 1.2. The 

 4
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release of the drug can be achieved by triggering the appropriate linkers which can 

respond to changes in the physical and biological environments, such as temperature, 

pH, and the presence of enzymes or proteins at the target site.(Rodrigues, Beyer et al. 

1999; Gillies, Goodwin et al. 2004; Kim, Gil et al. 2006; Schmid, Chung et al. 2007; 

York, Kirkland et al. 2008; Liu, Maheshwari et al. 2009; Miller, Erez et al. 2009) The 

polymer-drug conjugates have become a fast-growing field because they have 

demonstrated several advantages over the corresponding parent drugs by (i) enhancing 

the solubility of hydrophobic drugs; (ii) enhancing therapeutic efficacy; (iii) reducing 

the toxicity; and (iv) increasing plasma half-life and volume distribution.(Li and wallace 

2008)  

 

Figure 1.2: Cartoon representation of polymer-drug conjugates. 

Early studies on polymer-drug conjugates by Duncan, Kopecek, and Ringdorf in 

the late 1970s resulted in the first polymer-drug conjugates to be used for medical 

treatment.(Duncan; Duncan and Kopecek 1984; Duncan 2006) Polymer-protein 

conjugates are the first practical use of polymer therapeutics as anticancer agents. 

SMANCS, a conjugate consisting of the anti-tumor protein neocarzinostatin (NCS) 

covalently linked to two styrene maleic anhydride (SMA) polymer chains(Iwai, Meada 

et al. 1984; Duncan 2006) and a PEGylated protein was introduced into clinical trial in 

the early 1990s.(Davis 2002; Duncan 2003; Harris and Chess 2003) To date, polymer-
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protein conjugates are used routinely as anticancer therapeutics as an adjunct to 

chemotherapy.(Duncan 2003) Currently, more than 14 polymer-drug conjugates are in 

Phase I or II clinical trials, for example, anti-endothelial immunoconjugates, fusion 

proteins, and caplostatin, the first polymer-angiogenesis inhibitor conjugate.(Arap, 

Pasqualini et al. 1998; Schraa, Kok et al. 2002; Satchi-Fainaro, Puder et al. 2004; Peer, 

Karp et al. 2007; Sanchis, Canal et al. 2010)  

Among these, the most advanced conjugate is Opaxio® (poly-L-glutamic acid-

paclitaxel conjugate (PG-TXL)), formerly known as Xyotax® from Cell Therapeutics 

Inc., which is expected to reach the market in the near future.(Li and wallace 2008) In 

PG-TXL, paclitaxel is conjugated to a synthetic poly(L-glutamic acid) through its 2’-

hydroxyl group via an ester linkage (Chart 1.1).  The resulting conjugate is highly water 

soluble (>20mg/kg) and has demonstrated significant enhanced antitumor efficacy and 

improved safety compared with paclitaxel in preclinical studies.(Li and wallace 2008) 

 

Chart 1.1: Structures of polymer-drug conjugates: a) Opaxio®; b) PK2. 
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HPMA copolymer-doxorubicin (Dox)-galctosamine conjugate, PK2, is the only 

polymer-drug conjugate based on active targeting (Chart 1.1). PK2 is a 27 kDa HMPA 

copolymer derivatized with 6.5% mol/wt, <2% free doxorubicin, and 2% mol/wt 

galactose, with efficient targeting of the asialoglycoprotein receptor selectively 

expressed on hepatocytes and in hepatomas.(Li and wallace 2008) 

 Nonetheless, the polymer-drug conjugates often have different pharmacokinetic 

profiles from the parent drugs, and are thus considered new chemical entities 

(NCEs).(Peer, Karp et al. 2007) Although there are a variety of novel drug targets and 

sophisticated chemistries available, only four drugs (doxorubicin, camptothecin, 

paclitaxel, and palatinate) and four polymers (N-(2-hydroxylpropyl)methacrylamide 

(HPMA) copolymer, poly-L-glutamic acid, poly(ethylene glycol) (PEG), and Dextran) 

have been repeatedly used to develop polymer-drug conjugates.(Duncan 2003; Peer, 

Karp et al. 2007) This is because significant chemistry is needed to develop an 

appropriate linker between the drug and the polymer backbone that can be cleaved to 

release the drug molecules. Another barrier is the limit of the loading capacity due to 

the lipophilic drug molecules attached to the polymer chain which dictate the carrier 

solubility. 

1.2.2 Metallic Nanoparticles 

Metallic nanoparticles are of great interest for nanoscopic drug delivery due to 

the fact that their sizes are controlled by the metal core, affording their production with 

near monodisperisty (Figure 1.3).(Peer, Karp et al. 2007) The surface of the metal core 

can be tailored by incorporating desired functionalities or ligands to facilitate the active 

targeting mechanism. Metallic nanoparticles, particularly gold nanoparticles have 
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recently been developed for cancer drug delivery.(Duncan, Kim et al. 2010) Some metal 

nanoparticles have been used for magnetic resonance imaging providing an opportunity 

to design nanocarriers which have both imaging and therapy characteristics. 

 

Figure 1.3: Cartoon representation of metallic nanoparticle. 

Hydrophobic drugs can be loaded onto metallic nanoparticles through non-

covalent interactions or covalent conjugation to the particles via cleavabale linkages 

similar to those described in the polymer-drug conjugation systems. The encapsulation 

of lipophilic drugs into the monolayer of the metallic nanoparticle can be achieved by 

the incorporation of appropriate ligands on the metal shell to provide hydrophobic 

interaction between the drug and ligands. Rotello et al. have reported a biocompatible 

gold nanoparticle with a 2.5 nm core modified with an alkanethiol interior and a 

tetra(ethylene glycol) (TEG) hydrophilic shell for cancer drug delivery.(Kim, Ghosh et 

al. 2009) 

However, inorganic nanoparticles may not provide advantages over other types 

of nanoscopic drug deliveries for systemic targeting of individual cancer cells because 
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they are not biodegradable or small enough to be cleared easily, resulting in potential 

accumulation in the body, which may cause long-term toxicity. In addition, the drug 

molecules attached to the surface of the particles or loaded onto their monolayer surface 

limit the solubility of the drug-loaded scaffolds in aqueous media, as these drugs are 

lipophilic and surface functionalities dictate the solubility of these metallic 

nanoparticles. 

1.2.3 Dendrimers 

Dendrimers are synthetic, branched macromolecules that form a tree-like 

structure with well-controlled structural architecture that show promise in several 

biomedical applications.(Fréchet and Tomalia 2001) Dendrimers are considered as a 

new class of polymers having been first published in the late 1970s and early 

1980s.(Buhleier, Wehner et al. 1978; Newkome, Yao et al. 1985; Tomalia, Dewald et 

al. 1985)  A dendrimer is composed of focal point or core, branches or intermedediate 

layers, and surface groups or the periphery as shown in Figure1.4. Since dendrimer 

synthesis can be achieved in a stepwise fashion, they are theoretically monodisperse in 

size and highly reproducible. These characteristics make dendrimers interesting 

candidates for drug delivery scaffolds because they should also provide reproducible 

pharmacokinetic behavior.(Newkome, Yao et al. 1985; Tomalia, Dewald et al. 1985; 

Hawker and Fréchet 1990; de Brabander-van den Berg and Meijer 1993) Traditional 

polymer systheses result in polymers which are polydisperse making the 

pharmacokinetics of these polymers varied and lack control and reproducibility.  
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Figure 1.4: Cartoon representation of dendrimer structure. 

There are several classes of dendrimers that have been reported for biological 

applications, e.g. polyamidoamines, polyamines, polyamides (polypeptides), poly(aryl 

ethers), polyesters, carbohydrates, and DNA.(Lee, MacKay et al. 2005) Amongst these 

scafolds, polyamidoamine (PAMAM) dendrimers, structure shown in Chart 1.2, are 

commercially available with a variety of generations and peripheral functionalities and 

are the most widely used dendrimer scaffolds for biological applications. However, they 

exhibit significant toxicity due their multiple cationic amine groups at the scaffold 

surface. To date, there are several classes of dendrimers that have been developed 

which are highly biocompatible and water soluble.(Gillies and Fréchet 2005)  
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Chart 1.2: Structure of polyamidoamine (PAMAM) dendrimers. 

Initial studies of dendrimers, as potential drug delivery scaffolds, focused on 

their use as unimolecular micelles for noncovalent encapsulation of drug molecules. 

Because of their highly branched structures at high molecular weighs, they show 

nanometer size scaffolds which are globular in shape and provide a pocket for 

hydrophobic molecule encapsulation. The advantage of unimolecular micelles is that 

their micelle structure is maintained at all concentrations (no CMC). However, it is 

difficult to control the release of the drugs and they have less encapsulation stability.  
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Figure 1.5: Cartoon representation of dendrimers as drug delivery scaffolds:                           
a) unimoleculear micelle; b) drug conjugated; c) self-immolative. 

An alternative approach to the development of dendrimers as drug delivery 

containers is to covalently link the drug molecules to the dendrimer scaffold. The 

stepwise syntheses of dendrimers provide scaffolds with a well-defined number of 

peripheral groups. The controlled multivalency of dendrimers can be used to attach 

several drug molecules, targeting groups, and solubilizing groups to the periphery in a 

well-controlled manner. The release of the drug can be controlled by incorporating 

degradable linkages between the drug molecule and dendrimers. For example, cisplatin, 

a potent anticancer drug with nonspecific toxicity and poor water solubility, was 

attached to the periphery of a G-4 carboxylate-terminated PAMAM dendrimer.(Malik, 

Evagorou et al. 1999) The dendrimer-drug conjugates show increased solubility, 

decreased systematic toxicity, and selective accumulation in solid tumor.   PAMAM 
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dendrimers have also been used as antitumor targeted carriers of 

methotrexate.(Kukowska-Latallo, Candido et al. 2005) The amine groups at the 

periphery of G-5 PAMAM dendrimers were modified with acetyl groups to reduce their 

surface charge. The actylated PAMAM was subsequently functionalized with folate, as 

a target ligand, fluorescein fluorophore, and methotrexate. In vivo delivery of 

dendrimer-methotrexate conjugates, using  multivalent targeting, results in a tenfold 

reduction in tumor size compared with that achieved with the same molar concentration 

of free systemic methotrexate.(Kukowska-Latallo, Candido et al. 2005; Hong, Leroueil 

et al. 2007) This work provided motivation for further pre-clinical development, and a 

variety of dendrimers are now under investigation for cancer treatment. 

Recently, degradable dendrimers known as self-immolative, cascade-release or 

geometrically disassembling dendrimers have been reported. In these dendrimers, a 

single chemical reaction at their core or periphery initiates their complete 

depolymerization into small, structurally similar units.(Amir, Pessah et al. 2003; de 

Groot, Albrecht et al. 2003; Li, Szalai et al. 2003; Szalai, Kevwitch et al. 2003) This 

intelligent structural design could be a potential candidate for future delivery vehicles. 

However, dendrimers are expensive and require complex synthetic methods 

which will bring difficulties for large-scale production. The unique properties of 

dendrimers could be useful in practical term, but the optimization of structure and 

properties to maximize drug bioavailability and targeting to the tumor cell need to be 

improved and further investigated.  
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1.2.4 Liposomes 

Liposomes, nanosized lipid vesicles, first described in the 1960s, are another 

nanoscopic drug delivery vehicle that has shown significant promise in drug delivery 

technology.(Bangham, Standish et al. 1965; Gabizon 2001; Gabizon 2001; Torchilin 

2005) This is because of their components which comprise of natural substances that 

are biocompatible, biodegradable and nontoxic. Liposomes consist of lipid bilayers with 

a size of ~100 nm and larger (Figure 1.6). Liposomes carrying chemotherapeutic small-

molecule drugs have been approved for cancer treatment since the mid-1990s.(Peer, 

Karp et al. 2007) However, since liposomes have hydrophilic interiors, these assemblies 

are primarily used for hydrophilic drug molecules. For example, the water-soluble salt 

of Dox has been successfully formulated with liposomes (e.g. Doxil).(Safra, Muggia et 

al. 2000; Bao, Goin et al. 2004) In addition, liposomes do not provide controlled release 

capability and have low circulation time due to phagocytosis, a process by which 

phagocytes remove foreign materials.(Torchilin 2005; Peer, Karp et al. 2007)  

 

Figure 1.6: Cartoon representation of liposomes. 
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Cell specific targeting of liposomes was first described in 1980 and the first 

improved long circulating liposomes were described in 1987 and later named “Stealth 

liposomes”.(Leserman, Barbet et al. 1980; Allen and Chonn 1987) Poly(ethylene 

glycol) (PEG) was first introduced in the early 1990s to modify the surface of liposomes 

for improved pharmacokinetics (PK) after intravenous (i.v.) administration. 

Subsequently, the use of polyethylene glycol (PEG) was shown to increase circulation 

times for liposomes.(Klibanov, Maruyama et al. 1990) However, the long circulation 

time of liposomes may cause extravasation of the drug in unexpected sites and lead to 

severe side effects. Palmar-plantar erythrodysesthesia (PPE), also called the hand-foot 

syndrome, is a dermatologic toxicity reaction seen with high doses of many types of 

chemotherapy. It is the most common clinical side effect from the PEGylated liposomal 

doxorubicin.(Peer, Karp et al. 2007)  

Although chemotherapeutic drugs formulated with liposomes make up most of 

the primary delivery systems on the market, the lack of controlled release properties of 

encapsulated drugs, fast oxidation of some phospholipids, and high production cost 

need to be improved. Additionally, the liposome interior is not suitalble for 

encapsulating lipophilic molecules. 

1.2.5 Micelles 

Polymeric micelles (5-100 nm) have been of great interest as a versatile 

nanomedicene platform, especially for cancer therapeutic applications due to their 

ability to encapsulate poorly water-soluble chemotherapeutic agents in their lipophilic 

interior.(Kataoka, Harada et al. 2001; Torchilin 2004; Sutton, Nasongkla et al. 2007; 

Kale, Klaikherd et al. 2009) Micelles consist of self-assembling small molecule 
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surfactants or amphiphilic polymers exibiting phase separatation between hydrophobic 

and hydrophilic segments to form nanoscopic supramolecular core/shell structures 

(Figure1.7). Its hydrophobic core provides lipophilic drug encapsulation, while the 

hydrophilic shell provides solubility in aqueous media. Currently, five micellar 

formulations for anticancer therapy are under clinical evalulation, of which Genexol-

PM has been FDA approved for use in patients with breast cancer. An early phase of 

clinical trials has shown that the cancer drug-polymer micelle formulation can enhance 

the aqueous solubility and prolong their in vivo half-lives with lessened systemic 

toxicity.(Oerlemans, Bult et al. 2010)  Free doxorubicin (Dox) has an elimination phase 

half-life (t1/2, β), or physiological excretion half-life, of 48 min, while the polymer 

micelle formulation has roughly triple the half-life, bringing it in the range of 2.3-

2.8h.(Sutton, Nasongkla et al. 2007) 

 

Figure 1.7: Cartoon representation of micelles. 

Though, micellar assemblies formed from small molecule surfactants have 

inherent stability issues. Small molecule surfactants can assemble to form micelles 

when the concentration is above the critical micelle concentration (CMC). The 

assemblies formed from amphiphilic block copolymers tend to exhibit enhanced 

stabilities.(Gu, Zhang et al. 2008) In the late 1980s, Kazunori Kataoka and Alexander 

 16



www.manaraa.com

 

Kabanov independently developed the used of block copolymer micelles for drug 

delivery. To date several micellar formulations of anticancer agents are in clinical trials. 

However, these still face significant complications because of a requisite concentration 

for assembly formation.  This drastically limits the practicality of in vivo micelle 

utilization, as large dilution of injected micelles into the body can destabilize these self-

assembling systems, causing undesirable release of the encapsulated drug payload 

before arrival at the target site.(Bae and Yin 2008) Moreover, the interaction between 

micelles and biological components, such as cellular membranes and blood 

components, can lead to release of the cargo from the micelle core at undesirable 

locations.(Chen, Kim et al. 2008; Chen, Kim et al. 2008) Therefore, alternate strategies 

are required to overcome such premature release. 

1.2.6 Cross-Linked Polymer Nanoparticles 

Cross-linked polymer nanoparticles or nanogels have recently been introduced 

as an alternative class of nanoscopic drug delivery vehicles.(Oh, Drumright et al. 2008; 

Kabanov and Vinogradov 2009; Vinogradov 2010) Recent studies suggest that nanogels 

are very promising for future biomedical applications due to their tunable chemical and 

three-dimensional (3D) physical structure, good mechanical properties, high water 

content, and biocompatibility. Nanogels are nanosized hydrogel networks that disperse 

in aqueous solution and are composed of hydrophilic or amphiphilic polymer matrices 

that are cross-linked by a physical or chemical cross-linking agent (Figure 

1.8).(Kabanov and Vinogradov 2009) Like hydrogels, nanogels are three-dimensional 

(3D) biocompatible material with high water content. These 3D structures allow the 
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entrapment of large amount of bioactive molecules with high encapsulation stability in 

their networks.(Jiwpanich, Ryu et al. 2010)  

 

Figure 1.8: Cartoon representation of nanogels and the mechanism of drug release. 

The polymeric cross-linked nanoparticles, first introduced by Sunamoto et al. in 

1993, were nanosized swollen aggregates of cholesterol-modified polysaccharide 

(pullulan) for delivery of insulin.(Akiyoshi, deguchi et al. 1993) Nonetheless, the term 

“nanogel” was first introduced by Kabanov and Vinogradov to define cross-linked 

bifunctional networks of cationic and neutral polymers such as the branched PEG-cross-

linked-PEI made from polyethylenenimine (PEI) and poly(ethylene glycol) (PEG) for 

delivery of polynucleotides.(Vinogradov, Bronich et al. 2002; Kabanov and Vinogradov 

2009)  

Nanogels are very promising in drug delivery applications due to their large 

loading capacity with high encapsulation stability and responsiveness to environment 

factors, for example, ionic strength, pH, temperature, and the presence of enzymes or 

proteins.(Kabanov and Vinogradov 2009) Loading of biological agents can be achieved 

by electrostatic, van der Waals and/or hydrophobic interactions between the 

encapsulated agents and the polymer matrix. As a result, the nanogels collapse forming 

stable nanoparticles, in which biological/drug compounds are entrapped. In addition, the 

large surface area of nanogels can be tailored with targeting ligands to enhance active 
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targeted nanocarrier characteristics. In order to control the release of therapeutics over a 

desired period of time, as well as enable the removal of the empty device after drug 

release, (bio)degradable linkages such as esters, peptides, acetals, disulfides, and 

hydrazones can be introduced into cross-linked networks.(Kabanov and Vinogradov 

2009; Oh, Bencherif et al. 2009) 

Although the early developments of nanogels were aimed at the transport of 

biomacromolecules, recently significant progress has been reported for the delivery of 

small therapeutic agents. For example, N-hexylcarbamoyl-5-fluorouracil, an anticancer 

prodrug of 5-fluorouracil (5-FU), encapsulated in poly(N-isopropylacrylamide)-co-

poly(N-vinylpyrrolidone) (PNIPAAm/VP) nanogels coated with polysorbate 80 showed 

enhanced therapeutic efficacy against parasites as well as reduced hepatotoxicity and 

nephrotoxicity compared to the free drug.(Tyagi, Lala et al. 2005; Soni, Babber et al. 

2006) 

Since nanogels are relatively new to the area of nanoscopic drug delivery, the 

synthetic methodologies for their preparation still need to be developed. The classical 

preparations, microemulsion and inverse microemulsion methods, do not facilitate the 

nanogels to be both water-soluble and encapsulate lipophilic guest molecules 

simultaneously.(Oh, Siegwart et al. 2007; Oh, Tang et al. 2007; Bachelder, Beaudette et 

al. 2008; Sisson, Steinhiber et al. 2009; Ryu, Jiwpanich et al. 2010) Furthermore, 

present and future nanogel applications require a high degree of control over several 

properties. These properties include stability for prolonged circulation in the blood 

stream, novel functionality for further bioconjugation, controlled particle size with 

 19



www.manaraa.com

 

uniform diameter, and biodegradability for sustained release of the drug for a desired 

period of time and facile removal of empty devices. 

1.3 Summary and Dissertation Overview 

In this chapter, we have discussed the classical nanoscopic drug delivery 

vehicles for cancer therapy using their nanosize characteristics to transport lipophilic 

drugs through cancer cells by passive targeting through EPR effect. The drug-loaded 

nanoscopic carriers we described above can be classified into two categories: covalent 

incorporation of drugs onto nanoscale scaffolds and noncovalent encapsulation of drugs 

into nanoscale assemblies. To avoid the modification of parent drugs, which can alter 

their therapeutic properties, we focus on the noncovalent encapsulation approach. We 

have also discussed the cross-linked nanoscopic carriers which provide high 

encapsulation stability and are considered promising nanoscopic drug delivery vehicles.  

This dissertation describes a new class of self-cross-linked polymer nanogels as 

promising nanoscopic drug delivery vehicles for noncovalent encapsulation of 

lipophilic drugs. A methodology for the preparation of self-cross-linked nanogels is 

described in Chapter 2. Since the cross-linked polymeric nanoparticles could provide 

high encapsulation stability over classical supramolecular nanoassemblies, we describe, 

in Chapter 3, a method development to track the noncovalent encapsulation stability 

using FRET based methods. In Chapter 4, we detail the tuning of encapsulation stability 

at maximum loading capacity of lipophilic molecules into self-cross-linked nanogels, 

and Chapter 5 contains general conclusions and future research directions.   
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CHAPTER 2 

 
SELF-CROSS-LINKED POLYMER NANOGELS: A SURFACTANT-FREE 

HYDROPHOBIC ENCAPSULATION METHOD 

2.1 Introduction 

Noncovalently encapsulating hydrophobic guest molecules in a water-soluble 

container and then releasing them in response to a specific trigger are important goals in 

supramolecular chemistry, carrying clear implications in applications such as drug 

delivery.(Jeong, Bae et al. 1997; Allen and Culis 2004; Haag 2004; Koo, Rubinstein et 

al. 2005; Lee, MacKay et al. 2005; Peer, Karp et al. 2007; Bachelder, Beaudette et al. 

2008; Oh, Drumright et al. 2008; Kale, Klaikherd et al. 2009) When execution of these 

supramolecular events is based on a nanosized host, there is even greater interest 

because of the potential for passive targeting of tumor tissue through the enhanced 

permeability and retention effect (EPR).(Baban and Seymour 1998; Maeda, Wu et al. 

2000; Duncan 2003; Gillies and Fréchet 2005) 

Chemically cross-linked, water-soluble polymer nanoparticles constitute a 

promising scaffold in therapeutic delivery applications, offering potential to circumvent 

stability issue.(Kakizawa, Harada et al. 1999; Aliyar, Hamilton et al. 2005; Oh, 

Drumright et al. 2008; Fang, Zhang et al. 2009; Kabanov and Vinogradov 2009) 

However, these polymeric nanoparticles or nanogels face cetain complications, as they 

are prepared by microemulsion or inverse microemulsion methods.(Talsma, Eabensee et 

al. 2006; Bachelder, Beaudette et al. 2008; Oh, Drumright et al. 2008; Sisson, 

Steinhiber et al. 2009) Microemulsion methods, which involve oil-in-water emulsion, 

utilize lipophilic monomers to produce the nanogels, which are thus generally water 
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insoluble. When a water-soluble polymer nanoparticle is desired, inverse 

microemulsion based synthesis is the preferable method. Note that the continuous phase 

in the inverse microemulsion (water-in-oil) method is based on a lipophilic solvent and 

therefore cannot be used to encapsulate hydrophobic guest molecules during 

nanoparticle formation. Moreover, these methods are relatively complex and require 

multiple purification steps to remove not only the unreacted monomer, but also the 

surfactant materials that were used as the emulsion stabilizer. An attractive alternative 

to forming polymer nanoparticles is to collapse a limited number of polymer chains. 

Such methods have been previously reported, but require ultrahigh dilution conditions 

or inverse addition conditions,(Kadlubowski, Grobelny et al. 2003; Jiang and 

Thayumanavan 2005) which limit capabilities for guest molecule incorporation. To 

overcome these issues, we develop a facile method that allows for the design and 

syntheses of water-soluble polymer nanoparticles under non-emulsion conditions with 

high lipophilic encapsulation capabilities. 

A facile method, reported by us recently, allows for the design and syntheses of 

polymer nanoparticles under non-emulsion condition.(Ryu, Chacko et al. 2010; Ryu, 

Jiwpanich et al. 2010) The versatility of these polymer nanoparticles has been further 

demonstrated by showing that (i) lipophilic guests can be easily incorporated 

noncovalently within the nanoparticles; (ii) the noncovalently encapsulated guest 

molecules can be released in response to a biologically relevant stimulus; and (iii) the 

surfaces of these particles are functionalizable. For a stimuli-responsive functional 

group, we considered a disulfide bond, since these bonds are susceptible to biochemical 

reductants such as glutathione (GSH), thioredoxin, and peroxiredoxin.(Bernkop-
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Schnürch 2005; Heffernan and Murthy 2009) We have previously reported a synthetic 

methodology in which a pyridyl disulfide (PDS) side chain functionality was used as a 

handle for incorporating thiol-based functional groups onto polymers.(Ghosh, Basu et 

al. 2006) The basis for this methodology is the higher reactivity of the pyridyl disulfide 

bonds with thiols as compared to other disulfide functionalities, which is facilitated by 

the release of a stable 2-thiopyridone byproduct. We envisioned taking advantage of 

this high reactivity of the PDS functionality to affect cross-linking in polymer chains. 

Our hypothesis involves the addition of a deficient amount of dithiothreitol (DTT), 

which is known to cleave PDS bonds with great efficiency. When a deficient amount of 

DTT is added, a corresponding small percentage of PDS groups will be converted to 

free thiols. These free thiols would then react with an equivalent amount of the 

remaining PDS functionalities to create disulfide bonds, which would effectively cross-

link the polymer chains, independent of whether the process is intra-chain or inter-

chain. We further envisioned that because the PDS functionalities are relatively 

hydrophobic, they would collapse in the aqueous phase. If this were the case, we 

hypothesized that polymer nanoparticles would be obtained upon treatment of our 

polymers with deficient amount of DTT, without the need for ultrahigh dilution 

preparative conditions (Figure 2.1). We also envisaged that the hydrophobic interior in 

the aggregate would provide an opportunity to encapsulate lipophilic guest molecules 

prior to cross-linking. 
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Figure 2.1: Design and synthesis of the self-cross-linked polymer nanogels. 

2.2 Results and Discussion 

2.2.1 Design and Synthesis 

The polymer nanogel precursor is based on a random copolymer that contains 

oligoethyleneglycol (OEG) units and pyridyldisulfide (PDS) groups as side chain 

functionalities.  The role of the OEG unit is to introduce a charge-neutral hydrophilic 

functional group, which is known to endow biocompatibility. The PDS functionality 

plays several key roles: (i) this is a lipophilic functionality and thus plays a critical role 

in providing a supramolecular amphiphilic nanoassembly in the aqueous phase. Note 

that this feature avoids the use of any additional surfactant molecules to generate the 

nanogel and the size of this nanoassembly dictates the size of the final polymer nanogel; 

(ii) the amphiphilic nature of the assembly and lipophilic environment afforded by the 

PDS functionality provides the opportunity for lipophilic guest molecules to be 

sequestered within these nanoassemblies prior to cross-linking. (iii) The PDS 

functionality is reactive, but specific to thiols and thus provides a mild method for 

disulfide cross-linking to form the nanogel. (iv) Since the nanogels are based on 

disulfide cross-linkers that can be cleaved by thiol-disulfide exchange reactions, these 
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nanogels also provide a pathway to trigger the release of the stably encapsulated guest 

molecules in response to an external stimulus. 

Random co-polymer 1, containing 30% of the oligoethyleneglycol methacrylate 

and 70% of the PDS-derived methacrylate, was prepared by reversible addition-

fragmentation chain transfer (RAFT) polymerization. Structures of the nanogel 

precursors, polymer nanogels and synthetic approach are shown in Scheme 2.1. 

The next step involves the conversion of these polymeric aggregates into 

chemically cross-linked nanogels.  We hypothesized the formation of the nanogel 

through the following process.  Addition of a deficient amount of dithiothreitol (DTT) 

would cause the cleavage of a well-defined percentage of the PDS groups to the 

corresponding thiol functionalities. These thiol functionalities will then react within the 

polymeric aggregates with unreacted PDS functionalities.  This reaction results in 

disulfide cross-links within the polymeric aggregates causing the formation of the 

nanogels, as shown in Scheme 2.1.     
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Scheme 2.1: Structures of the polymers and nanogels. (i) Cleavage of specific amount 
of PDS groups by DTT. (ii) Nanogel formation by inter/intrachain cross-linking. (iii) 
Surface modification of nanogels with thiol-modified Tat peptide or FITC. 

Cross-linked particles were synthesized from this polymer by adding 20 mol% 

of DTT with respect to the number of PDS functionalities in the polymer. Note that 

there would be residual PDS functionalities in these gels, providing useful handles for 

introducing ligands on the nanogel surfaces (vide infra). We characterized the structures 

obtained from these reactions by transmission electron microscopy (TEM) and dynamic 

light scattering (DLS). DLS studies reveal that the structures obtained are ~190 nm in 

size (Figure 2.2a). TEM images shown in Figure 2.2b revealed well-defined spherical 

structures with slightly smaller diameters than those observed in DLS, which is 

attributed to the possible swelling of the nanoparticles in water.  
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Figure 2.2: Size distribution of the nanogel (1 mg/mL) in water. (a) DLS trace. (b) 
TEM image. 

We were interested in identifying whether the obtained particle is indeed a stable 

cross-linked structure and if the size of the particle is completely controlled by the size 

of a polymer aggregate obtained prior to the cross-linking reaction. For this purpose, we 

analyzed the size of the polymer assembly prior to the DTT reaction. DLS studies 

revealed aggregates of about 17 nm, which suggests that the particles obtained upon 

DTT reaction involved inter-chain cross-linking in addition to the possible intra-chain 

reactions. We presume that this assembly is due to the amphiphilic nature of the 

polymer caused by the hydrophobic PDS groups, because there were no discernible 

nanoassemblies when acetone alone is used as the solvent (Figure 2.3). We can control 

the size of the nanoparticle by varying the reaction conditions. In water, DTT cleavage 

and disulfide exchange reactions occurred intramolecularly in polymer aggregates and 

resulted in 10 nm size nanoparticles. Interestingly, after the formation of the polymer 

nanoparticle using the DTT reaction, the size of the assemblies in both acetone and 

water were identical (Figure 2.3). This illustrates the stability of the assembly and also 

confirms that they are formed by chemical cross-linking of the functionalities. We 
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calculated the water content of the nanogels based on the difference in size of the 

nanogels in swollen and dried state. The average size of swollen gels in water measured 

by DLS, and dried gels measured by TEM are 190 nm and 110 nm, respectively. 

Therefore, from the difference in volume between dry state and swollen state in one 

particle (7.0×105 nm3 and 3.5×106 nm3 for dried state and swelled state, respectively), 

we can estimate that 2.8 ×106 nm3 volume is filled with water.  

 

Figure 2.3: (a) Size distribution of polymers (black line) and nanoparticles prepared in 
water (green line) and nanogels prepared in water/acetone (red line). The concentrations 
are 1 mg mL-1 measured in water. (b) DLS of nanogel (1 mg mL-1) in water and acetone 
showed almost same size distribution.  

With our methodology, we were able to obtain two very different particle sizes 

by simply varying the concentration of polymers. We analyzed the sizes of polymer 

assemblies prior to the DTT reaction. DLS studies revealed aggregates of about 120 nm 

at 10 mg/mL in water, and 12 nm below 5 mg/mL. Subsequent cross-linking reaction by 

DTT led to nanoparticles with two different sizes (16 nm and 190 nm with 5 mg/mL 

and 10 mg/mL, respectively) as shown in Figure 2.4. Upon decreasing the concentration 

of copolymer 1 to below 0.5 wt% in water, we obtained 16 nm nanoparicles after DTT 

induced cross-linking. The resulting nanoparticles showed the same size (190 nm) when 

the solution was diluted ten times, while the polymer 1 at this concentration showed 12 
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nm size. This once again confirms that the obtained particles are indeed stably cross-

linked structures. This suggests that we can control the size of the nanoparticles by 

simply tuning the reaction conditions. 

 

Figure 2.4: (a) Time correlation function and (b) size distribution of co-polymer 1 at 
different concentration (0.5 wt% and 1.0 wt%). (c) Time correlation function and (d) 
size distribution of nanogels which were prepared at different concentration (0.5 wt% 
and 1.0 wt%). 

2.2.2 Guest Encapsulation and Triggered/Controlled Release 

For a nanocarrier to be effective, it should be able to stably encapsulate 

lipophilic guest molecules and release its contents in response to a biologically relevant 

trigger.(Murthy, Thng et al. 2002; Jiang, Qi et al. 2007; Oh, Siegwart et al. 2007; Chan, 

Wong et al. 2008; Zhang, Liu et al. 2008) Disulfide bonds are particularly attractive as 

stimulus-sensitive functionalities in medicinal chemistry as they can be cleaved in the 

presence of high reducing agent concentrations. Reducing agents, such as reduced 
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glutathione (GSH), thioredoxin, and peroxiredoxin, are found at varying levels 

throughout the body. For example, GSH is found in millimolar concentrations in the 

cytosol, where as the extracellular concentration is only micromolar.(Bernkop-Schnürch 

2005; Yang, Chen et al. 2006; Chong, Chandrawati et al. 2009; Sivakumar, Bansal et al. 

2009) Therefore, a GSH-sensitive delivery vehicle can be effective in facilitating 

specific intracellular delivery of encapsulated molecules.(Wu and Senter 2005; Li, 

Lokitz et al. 2006; Bae, Mok et al. 2008; Jia, Wong et al. 2008; Bauhuber, Hozsa et al. 

2009; Li, Zhu et al. 2009)  

 

Figure 2.5: (a) Absorption spectra of pyridothione byproduct during nanogel synthesis. 
(b) Size distribution of nanogels (1 mg/mL) in DLS. 

We hypothesized that GSH could induce the release of loaded dyes through 

cleavage of the disulfide cross-linking bonds and that the release kinetics could be tuned 

by the cross-linking density in the nanogel.  To test this possibility, we prepared three 

different cross-linked particles by adding 10, 20 or 50 mol% (against the precursor PDS 

groups) of DTT to polymer 1. The progress of the reaction was conveniently monitored 

by tracking the release of the pyridothione byproduct through its characteristic 

absorption at 343 nm. Considering the mechanism by which this addition results in 
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cross-linked polymer particles and the percentage of PDS functionalities in polymer 1, 

this reaction should result in nanoparticles NG1, NG2, and NG3 with 7%, 14%, and 

35% cross-linking densities respectively, assuming 100% reaction efficiency. Our 

estimations, based on pyridothione release, indicate that the actual cross-linking 

densities correspond to 6%, 13%, and 25% respectively (Figure 2.5a). DLS studies 

reveal that the structures obtained are all about 190 nm in size (Figure 2.5b).  

 

Figure 2.6: TEM images of NG1 (a), NG2 (b), and NG3 (c). 

TEM images reveal well-defined spherical structures with slightly smaller 

diameters than those observed in DLS, which is attributed to the possible swelling of 

the nanoparticles in water (Figure 2.6). It is interesting to note that the sizes of all three 

nanogels are very similar. This suggests that the size of the assembly prior to the cross-

linking reaction dictates the nanogel size and that further cross-linking occurs within 

that nanoassembly. 

To investigate the possibility of encapsulating hydrophobic guest molecules 

within the interiors of these nanogels, we carried out the DTT-based cross-linking 

reaction in the presence of Nile red, a hydrophobic dye. Nile red is inherently insoluble 

in water. Therefore, the reaction was optimized using acetone as a solvent in the first 

steps before the addition of water during the cross-linking reaction. Isolation of the 

 38



www.manaraa.com

 

nanoparticles and their subsequent dissolution in water retains Nile red, as discerned by 

the emission spectra of all three gels (Figure 2.7). 

 

Figure 2.7: The emission spectra of Nile red sequestered in polymer nanogels. 

To explore triggered release, we added GSH into nanogel solutions and 

investigated the release of Nile red by tracing the decrease in the hydrophobic dye’s 

spectral emission intensity caused by its insolubility in the aqueous media. To examine 

the GSH-dependent dye release, Nile red loaded nanogel solutions (0.05 wt%) in pH 7.4 

sodium acetate buffer solution were treated with different concentrations of GSH (10 

μM and 10 mM) and the intensity of Nile red emission at 610 nm was monitored for 

three days.  

At low GSH concentrations (10 μM), little dye release was observed for all 

nanogels (Figure 2.8a-c). This concentration corresponds to that commonly observed 

outside the cell and within the blood plasma. In contrast, high concentrations of GSH 

(10 mM), corresponding to those found inside the cell, induced significant dye release 

(Figure 2.8d-f). 
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Figure 2.8: Dye release from the nanogels NG1 (a, d, g), NG2 (b, e, f), and NG3 (c, f, i) 
(0.05 wt%) in response to varied GSH concentrations. (a-c) 10 μM GSH and (d-f) 10 
mM GSH at pH 7.4, and (g-i) 10 mM GSH at pH 5. The release only occurred at high 
GSH concentration. At acidic pH under 10 mM GSH, the release was faster and more 
gradual over time than those at neutral pH. 

Cross-linking density is most likely to influence the rate of dye release from the 

nanogel interior. NG1 (6% cross-linked nanogel) showed rapid release reaching a 

plateau after 6 h at 10 mM GSH in pH 7.4 buffer solution. NG2 (13% cross-linked 

nanogel) showed slower release, reaching a maximum at 12 h; NG3 (25% cross-linked 

nanogel) displayed gradual, highly sustained release for several days. Because the 

cellular entry of these nanogels would likely involve endocytosis, we were interested in 

 40



www.manaraa.com

 

analyzing the release profile at lower pH.  We found that the difference in the release 

profile of these nanogels under acidic conditions (pH 5) is very similar to that observed 

with pH 7 (Figure 2.8g-i).  While this bodes well for endocytosis based entry into the 

cells, we also found the release profile at high GSH concentration to be surprising, as 

GSH activity is considered most efficient at neutral pH.(Moskaug, Sandvig et al. 1987) 

As shown in Figure 2.9, similar release profiles were observed for all three gels over 

several hours at both pH 5 and 7.4, clearly demonstrating that the kinetics of guest 

release can be controlled by cross-linking densities. Nonetheless, we observed faster 

release of encapsulated dyes in NG1 and NG2 at pH5, while there were no significant 

different in NG3. We hypothesize that the remaining of PDS groups in NG1 and NG2 

are protonated creating charge-charge repulsions that swell the nanogel networks. The 

swelling of nanogels in acidic condition results in accelerating the rate of guest release.  

 

Figure 2.9: (a) Comparison of GSH-induced dye release rate from the nanogels which 
have different cross-linking densities at (a) pH 7.4 and (b) pH 5. 

2.2.3 Cytotoxicity 

We anticipated that our gels would be relatively non-toxic, because they are 

made from biocompatible oligoethyleneglycol components as surface displays in a 
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methacrylate backbone. Treatment of cells with the nanogels indeed allows high cell 

viability and no concentration-dependent toxicity up to a nanogel concentration of 1 mg 

mL-1 (Figure 2.10). This result indicates that the nanogel material is non-toxic and thus 

a potential candidate for biological applications.  
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Figure 2.10: In vitro toxicity of empty nanogels with 293T cells after 24 hour 
incubation. 

2.2.4 Surface Functionalization 

We were also interested in testing our hypothesis that we can achieve surface 

functionalization of these nanogels by thiol-disulfide exchange reactions with the 

unreacted PDS groups. These PDS groups can be reacted with thiol-containing 

compounds, allowing for chemoselective ligand modification. To test this, nanogel 

solutions (1 mg mL-1) were treated with either excess fluorescein isothiocyanate (FITC) 

or thiol-modified FITC (1 mg mL-1). Figure 2.11 shows a significant difference between 

the two samples; while thiol-modified FITC treated nanogels exhibited very strong 

fluorescein emission, the bare FITC treated nanogels solution showed very little 
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emission, suggesting that the nanogels were covalently functionalized with thiol-

modified FITC by disulfide linkage and that the observed fluorescence is not due to 

noncovalent surface binding of the dye molecules. 

 

Figure 2.11: The emission spectra of nanogels (1mg/mL) treated with thiol-modified 
FITC (FITC-SH) and FITC. 

To further investigate surface modification possibilities, nanogel solutions (0.1 

mg mL-1) containing the hydrophobic dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindo-

carbocyanine perchlorate (DiI), were treated with a modified cell penetrating peptide, 

Tat-SH (0.1 mg mL-1) with a C-terminal cysteine, for 24 h. These solutions were then 

incubated with MCF-7 human breast cancer cell lines for just 2 h. The cell 

internalization efficiency of the unmodified nanogels (control) and Tat-SH treated 

nanogels were then examined by confocal microscopy.  
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Figure 2.12: Representative confocal microscopy images of MCF-7 cells incubated 
with; (a) the unmodified nanogels, (b)Tat-SH treated nanogels. 

As shown in Figure 2.12, the internalization of Tat-SH modified nanogels 

occurred much more readily than that observed with the control gels, confirming the 

effectiveness of using the remaining PDS groups to simply modify the nanogel surface. 

This presents a clear method for incorporating ligands onto the polymer nanoparticles 

and thus achieves specificity to pathogenic cells using chemoselective disulfide 

chemistry.  

2.3 Summary 

We have demonstrated a simple, emulsion free method for the preparation of 

biocompatible nanogels that provides the ability to encapsulate hydrophobic guest 

molecules using intra/intermolecular disulfide formation of PDS containing polymers. 

Since disulfide bonds are biodegradable in a reducing environment, these nanoparticles 

hold great potential as intracelluar drug delivery vehicles. The release of guest 

molecules can be induced by external stimuli. By varying the cross-linking density of 

the nanogels, the release kinetics of guest molecules can be controlled. Additionally, we 

have demonstrated that the surface of these nanoparticles can be efficiently 
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functionalized under mild conditions. Taken together, the nanogel formation using the 

self-cross-linking polymers and corresponding method of surface modification open a 

new avenue for enhanced cytosolic drug delivery and establish a novel approach to 

creating polymer nanogels for a range of biomedical applications from drug delivery to 

biosensing.   

2.4 Experimental 

2.4.1 General Methods and Procedure  

2,2′-Dithiodipyridine, 2-mercaptoethanol, polyethylene glycol monomethyl 

ether methacrylate (MW 450), D,L-dithiothreitol (DTT), 1,1'-dioctadecyl-3,3,3',3'-

tetramethyl-indocarbocyanine perchlorate (DiI), Nile red, Tat-SH, and other 

conventional reagents were obtained from commercial sources and were used as 

received unless otherwise mentioned. Polymer was synthesized with RAFT 

polymerization and then purified by precipitation with ethyl ether. S-dodecyl-S’-2-(2,2-

dimethylacetic acid) trithiocarbonate (CTA) and pyridyl disulfide ethyl methacrylate 

(PDSEMA) were prepared using a previously reported procedures.(Lai, Filla et al. 

2002; Ghosh, Basu et al. 2006) 1H-NMR spectra were recorded on a 400 MHz Bruker 

NMR spectrometer using the residual proton resonance of the solvent as the internal 

standard. Molecular weights of the polymers were estimated by gel permeation 

chromatography (GPC) using PMMA standards with a refractive index detector. 

Dynamic light scattering (DLS) measurements were performed using a Malvern 

Nanozetasizer. The fluorescence spectra were obtained from a JASCO FP-6500 

spectrofluorimeter. Transmission electron microscopy (TEM) images were taken using 

a JEOL 100CX at 100 KV. 
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Synthesis of pyridyl disulfide ethyl alcohol: 

 
Aldrithiol-2 ( 20 g, 91 mol) was dissolved in  2.5 mL of methanol and then 

glacial acetic acid (1 mL) was added to the solution. To this mixture, a solution of 

mercaptoethanol (7.8 g, 99 mmol) in methanol (150 mL) was added drop-wise at 

ambient temperature with continuous stirring. After, the reaction mixture was stirring at 

room temperature for additional 3 hours, solvent was removed to get the yellow oil 

crude product which was purified by flash column chromatography by using silica gel 

as stationary phase and mixture of ethyl acetate:hexane (40:60) to afford the desired 

product as colorless oil. Yield: 68 % 1H NMR (400 MHz, CDCl3) δ 8.54 (m, 1H, a), 

7.63 (m, 1H, b), 7.42 (m, 1H,c), 7.18 (m, 1H, d), 3.83 (t, 2H, e), 2.97 (t, 2H, f). 
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Synthesis of pyridyl disulfide ethyl methacrylate: 

 

 
Pyridyl disulfide ethyl alcohol (11 g, 59 mmol) in dichloromethane (250 mL) 

was added triethylamine (8.3 g, 82 mmol), and then the mixture was cooled in an ice-

bath. To this cold mixture, a solution of methacryloyl chloride (8.6 g, 82 mmol) was 

added drop-wise with continuous stirring. After the mixture was stirring at ambient 

temperature for 6 hours, the mixture solution was extracted with water and wash with 

brine. The organic layer was collected, dried over anhydrous Na2SO4 and concentrated. 

The yellow oil crude product was purified by column chromatography using silica gel 

and mixture of ethyl acetate:hexane (20:80). Yield: 66% 1H NMR (400 MHz, CDCl3) δ 

8.47 (m, 1H, a), 7.63 (m, 2H, b), 7.08 (m, 1H,c), 6.12 (d, 1H, d), 5.58 (d, 1H, e), 4.39 (t, 

2H, f), 3.08 (t, 2H, g), 1.93 (s, 3H, h). 13C NMR (100 MHz, CDCl3) δ 167.1, 159.8, 

149.7, 137.1, 136.0, 126.1, 120.9, 119.8, 62.4, 37.4, 18.3.  

 47



www.manaraa.com

 

Synthesis of random copolymer (1):

 

  A mixture of S-dodecyl-S’-2-(2,2-dimethylacetic acid) trithiocarbonate (CTA) 

(90 mg, 0.3 mmol), PDSEMA (5 g, 20 mmol), polyethylene glycol monomethyl ether 

methacrylate (4 g, 8 mmol) and AIBN (10 mg, 0.06 mmol) were dissolved in DMF (10 

mL) and degassed by performing three freeze-pump-thaw cycles. The reaction mixture 

was sealed and then put into a pre-heated oil bath at 70 oC for 12h. The resultant 

mixture was dissolved in dichloromethane (5 mL) and precipitated in hexane (200 mL). 

To remove unreactive monomers, the precipitate was further dissolved in 

dichloromethane (5 mL) and re-precipitated in ethyl ether (200 mL) to yield purified 

random copolymer as a waxy liquid. Yield: 78%. GPC (THF) Mn: 24.7 K. PDI: 1.6. 1H 

NMR (400 MHz, CDCl3) δ: 8.40 (a), 7.62 (c, d), 7.05 (b), 4.16-4.02 (i, f), 3.58-3.48 (i), 

3.31 (j), 2.97 (e), 2.04-1.65 (h, h’), 1.24-0.72 (g, g’). The molar ratio between the two 

blocks was determined by integrating the methoxy proton in the polyethylene glycol 

unit and the aromatic proton in the pyridine and found to be 3:7 (PEO:PDSEMA). 
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Synthesis of thiol-modified FITC: 

 

A mixture of FITC (10 mg, 0.03 mmol), cystamine dihydrochloride (6 mg, 0.03 

mmol) and triethylamine (TECP) (13 mg, 0.13 mmol) was dissolved in DMSO (400 μL) 

and stirred for 4 h. To this reaction mixture was added tris(2-carboxyethyl)phosphine 

hydrochloride (9 mg, 0.03 mmol) and stirred for 1 h. The resultant mixture was 

precipitated in ethyl ether and washed with water. The crude product was used for 

nanogel surface modification without further purification. 

Synthesis of nanogel containing nile red: 

 

The polymer 1 (10 mg) and Nile red (2 mg) were dissolved in 200 μL of acetone 

and measured amount of DTT (4 μmol, 20 mol% against PDS groups) was added. After 

stirring for 10 min, 1 mL of deionized water was added and the mixture solution was 

stirred overnight at room temperature, open to the atmosphere allowing the organic 

solvent to evaporate. Excess insoluble Nile red was removed by filtration and 
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pyridothione was removed from the nanogel solution by ultrafiltration (triplicate) using 

a membrane with a molecular weight cutoff of 10,000 g mol-1 (Amicon Ultra cell-10K).  

Cell culture: 

  The cell viability of the nanogels was tested against 293T cells. This experiment 

has done by Mr. Reuben Chacko. 293T cells were cultured in T75 cell culture flasks 

using Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12) with 

10% fetal bovine serum (FBS) supplement. The cells were seeded at 10,000 

cells/well/200 μL in a 96 well plate and allowed to grow for 24 hours under incubation 

at 37 oC and 5% CO2. These cells were then treated with nanogels of different 

concentrations and were incubated for another 24 hours. Cell viability was measured 

using the Alamar Blue assay with each data point measured in triplicate. Fluorescence 

measurements were made using the plate reader SpectraMax M5 by setting the 

excitation wavelength at 560 nm and monitoring emission at 590 nm on a black well 

plate.  

Surface modification: 

This experiment has done by Mr. Reuben Chacko. FITC or thiol-modified FITC 

(1 mg) was dissolved in 100 μL of DMF and then 2 mL of nanogel (1 mg/mL) in water 

was added. The mixture solution was stirred overnight at room temperature. Non-

conjugated or physically adsorbed dye molecules were removed by ultrafiltration 

(thrice) using a membrane with a molecular weight cutoff of 10,000 g/mol. For Tat 

peptide modification, 10 μL of nanogel (1mg/mL) which contains 1% DiI molecules 

was added to 90 μL of phosphate pH 5 buffer. To this solution, 10 μL of Tat peptide 

solution (1 mg/mL) was added. After stirring overnight, 100 μL of this solution was 
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added to MCF-7 cells, which were grown in coverslip-bottomed Petri dishes, to make a 

total of 2 mL of culture medium. Cells were incubated with surface modified nanogels 

and control nanogels for 2 h before confocal imaging. 

 

Figure 2.13. The absorption spectra of nanogel (0.5 mg mL-1) treated with thiol-
modified FITC (FITC-SH) and with FITC. To estimate the number of FITC molecules 
on the nanogel surface, the absorption of FITC at 492 nm wavelength was compared in 
each nanogel treated with FITC-SH and FITC. Based on the calculation of FITC molar 
concentration by extinction coefficient and assuming that the nanogel density is around 
1.00, the number of FITC molecules on the nanogel surface was determined to be 
approximately three thousand molecules per particle.

Laser scanning confocal microscopy: 

The laser confocal experiment was performed by Mr. Reuben Chacko. MCF-7 

cells were cultured in T75 cell culture flask containing DMEM/F12 with 10% FBS 

supplement. 50,000 cells in 2mL of culture medium were seeded in coverslip-bottomed 

Petri dishes and allowed to grow for 3 days at 37 oC in a 5% CO2 incubator. These cells 

were treated with 100 μL of nanogels and incubated at 37 oC for 2 h before observing 

them by confocal microscopy. 
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Figure 2.14. Dye release from NG1 (a), NG2 (b), and NG3 (c) (0.05 wt%) in 10 μM 
GSH at pH 5.

 

Figure 2.15: GPC trace of the polymer 1. 
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Figure 2.16: 1H-NMR of the polymer 1. 
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CHAPTER 3 

 
NONCOVALENT ENCAPSULATION STABILITIES  

IN SUPRAMOLECULAR NANOASSEMBLIES 

3.1 Introduction 

The complications faced in the administration of insoluble and toxic 

hydrophobic drugs to target sites have spurred tremendous interest in the field of 

delivery vehicle design.(Allen and Culis 2004; Farokhzad and Langer 2009) Of the 

many factors considered in such design, the encapsulation stability of the delivery 

container is critical.(Savić, Eisenberg et al. 2006; Chen, Kim et al. 2008; Chen, Kim et 

al. 2008) Encapsulation of a hydrophobic molecule in aqueous media itself is just an 

indicator of the thermodynamic distribution of the molecules between the container and 

the bulk solvent. This does not provide indications on the stability of encapsulation in 

terms of the dynamics of guest exchange with the bulk media. Understanding the 

dynamics of interchange between the bulk solvent and the nanocontainer is crucial, as 

this carries clear implications to the potential leakage of encapsulated guest molecules 

from the vehicles as they pass through a biological system. Thus, an analysis of this 

process is necessary for optimization of the design and construction of drug delivery 

carriers.  

To probe the stability of encapsulation, we describe here the dynamics of 

encapsulated guest interchange in nanocarriers using Fluorescence Resonance Energy 

Transfer (FRET) as a tool. We then utilize this method to investigate the stability of 

encapsulation in a new class of polymer nanogels and compare it with that observed in 

classical amphiphilic nanoassemblies.(Jiwpanich, Ryu et al. 2010)   
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A lipophilic FRET pair, 3,3’-dioctadecyloxacarbocyanine (DiO, donor) and 

1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate (DiI, acceptor), 

were used for this purpose. These two dye molecules were independently sequestered in 

nanocarriers. When the solutions containing the dye molecules were mixed, two 

limiting scenarios are possible (Figure 3.1). If the dye molecules are stably encapsulated 

and do not exchange the guest molecules with the bulk solvent environment, then the 

two dye molecules will continue to be in two separate nanocontainers. If this is the case, 

no FRET will be observed since the distance between the two dye molecules is much 

higher than their Förster radius. However, if there is a significant exchange of the guest 

molecules between the container interior and the bulk solvent when the two solutions 

are mixed, it is likely that the dye molecules will equilibrate between the two containers 

due to the indistinguishable nature of all nanocarriers in solution. The resulting 

equilibration will cause DiI and DiO molecules to occupy the same container, leading to 

increased FRET.  Thus, tracing the evolution of FRET in such systems provides insight 

into the dynamics of guest interchange and potential carrier leakage.  

 

Figure 3.1: Mixed nanogels encapsulating DiI/DiO and their FRET behavior. 
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3.2 Results and Discussion 

3.2.1 Design and Synthesis 

We sought to investigate the versatility of such an approach using cross-linked 

polymeric nanogels. The reason for this choice is the assertion that variations in cross-

linking densities provide a method for tuning encapsulation stabilities and thus an 

opportunity to test our FRET-based strategy. Understandably, this feature also renders 

nanogels to be of great interest for controlled release applications in the area of 

pharmaceutical and biomedical research.(Byrne, Park et al. 2002; Kopeček 2002; 

Hamidi, Azadi et al. 2008; Kabanov and Vinogradov 2009) Generating water-soluble 

polymeric nanogels that encapsulate lipophilic molecules can be cumbersome. 

However, we have recently introduced a new emulsion-free method for nanogel 

preparation in aqueous solution described in Chapter 2 that also provides for facile 

hydrophobic guest encapsulation (Figure 1b).(Ryu, Chacko et al. 2010; Ryu, Jiwpanich 

et al. 2010) 

 
Scheme 3.1: Synthesis of nanogels containing hydrophobic guest molecules. 

To probe the guest exchange dynamics, aqueous solutions of NG1 (6% 

crosslinked; ~200 nm in size) containing 1 wt% DiO or 1 wt% DiI were prepared by in 
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situ loading (Scheme 3.1). The two solutions containing the separate dyes, referred as 

NG1-DiO and NG1-DiI, were then mixed in water. Fluorescence from the DiO 

excitation (450 nm) was monitored over time. The evolution of FRET was obtained by 

tracing the decrease in the donor (DiO) emission and concurrent increase in acceptor’s 

(DiI). The results show that there is a gradual equilibration of the dye molecules over a 

48 hour period (Figure 3.2). Interestingly, the thermodynamic distribution of the dye 

molecule significantly favors the nanogel interior, as discerned by the overall 

concentration of the otherwise insoluble dyes in the aqueous phase.6 Thus, the 

continuous interchange of the dyes among the nanocarriers is responsible for observed 

enhancement in FRET.  

 

Figure 3.2: (a) Fluorescence emission spectra of mixed NG1 encapsulating DiI/DiO. 
(b) Plot of FRET ratio vs time. 

The FRET ratio Ia/(Id+Ia), where Ia and Id are the fluorescence intensities of the 

acceptor (DiI) and the donor (DiO) respectively, was plotted against time (Figure 3.2). 

The slope of the linear fit is related to the dynamics of the guest exchange and we 
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define this as the leakage coefficient (Λ), which was found to be about 0.124 h-1 for the 

first six hours in NG1 (Figure 3.2).  

3.2.2 Tuning Encapsulation Stability 

We envisaged that cross-linking density could be used to tune the rate of 

exchange/leakage. The preparation method indeed allows for control over the degree of 

cross-linking.(Ryu, Chacko et al. 2010; Ryu, Jiwpanich et al. 2010) Accordingly, 

nanogels NG1, NG2, and NG3, with cross-linking densities of 6%, 13%, and 25% 

respectively, with encapsulated DiI and DiO were prepared. DLS studies reveal that the 

structures obtained are all about 200 nm in size (Figure 3.3) 

 

Figure 3.3: DLS traces of nanogels (a) NG1, (b) NG2, (c) NG3. 
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Dynamics of guest interchange were monitored and the FRET ratios were 

plotted against time. The leakage coefficient (Λ) in supramolecular nanoassemblies was 

calculated as shown in Table 3.1. NG2 and NG3 exhibited minimal exchange over 6 

hours at an Λ of 0.011 h-1 or below, compared to 0.124 h-1 for NG1 (Figures 3.4). These 

results suggest that degree of cross-linking is effective in tuning guest exchange 

dynamics. Since the precursor polymer P1 itself is capable of encapsulating DiO and 

DiI, we were interested in evaluating the exchange dynamics before and after cross-

linking.  P1 exhibited a Λ of 0.739 after mixing, indicating rapid guest interchange as 

compared to the cross-linked nanogels (Figure 3.4). 

 

Figure 3.4: FRET behavior of mixed nanocontainers encapsulating DiI/DiO: (a) P1, (b) 
NG1, (c) NG2, (d) NG3. 
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3.2.3 Encapsulation Stability of Supramolecular Nanoassemblies 

The key motivation in developing these experiments is to develop a screening 

method for probing exchange dynamics, and thus the potential, of drug delivery 

vehicles. Therefore, we were interested in investigating the guest exchange 

characteristics of other supramolecular assemblies that are known to encapsulate 

lipophilic guest molecules (Chart 3.1).  

 

Chart 3.1: Structures of surfactants. 

The simplest supramolecular assembly that encapsulates lipophilic guest 

molecules involves small molecule surfactant-based micelles (Chart 3.1).(Kabanov, 

Nazarova et al. 1995; Savriar, Ghosh et al. 2008; Ryu, Roy et al. 2010) Accordingly, we 

encapsulated DiO and DiI in CTAB (cetyl trimethylammonium bromide) and Tween80 

micelles and carried out the FRET experiments. Complete equilibration of the dye 

molecules was observed instantaneously upon mixing the DiO and DiI based micelles 

with the FRET ratios of 0.850 and 0.501 respectively (Figure 3.5).  
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Figure 3.5: Fluorescence spectra (λex = 450 nm) of mixed containers encapsulating DiI 
and DiO; (a) CTAB, (b) Tween80, (c) Amphiphilic random copolymer, (d) Block 
copolymer Pluronic P85. 

Since the nanogels are based on polymers, we also investigated other polymer-

based nanoassemblies. We measured the guest exchange dynamics of an amphiphilic 

random copolymer (structure shown in Chart 3.1).(Ryu, Roy et al. 2010) The guest 

exchange rate in these assemblies was found to be 0.788 (Figure 3.5). Similarly, the 

encapsulation stability of pluronic block copolymer micellar assemblies,(Kabanov, 

Batrakova et al. 2002; Sharma and Bhatia 2004; Batrakova and Kabanov 2008) which 

are widely used in biomedical applications, exhibited an Λ of 0.358 (Figure 3.5). This is 
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slower than assemblies based on small molecule surfactants and random copolymers, 

but faster than the nanogels. 

Table 3.1: Leakage coefficient (Λ) in supramolecular nanoassemblies. 

Supramolecular nanoassemblies Leakage coefficient (Λ), h-1

NG1 

NG2 

NG3 

P1 

CTAB 

Tween80 

Random copolymer micelles 

Pluronic® P85 

0.124 

0.011 

0.005 

0.739 

0.850 

0.501 

0.788 

0.358 

3.2.4 Triggering Release by External Stimului (GSH) 

The results above suggest that the crosslinked polymer nanogels exhibit high 

encapsulation stability and the leakage dynamics can be tuned by varying the 

crosslinking density. While encapsulation stability is important, a practical delivery 

vehicle must also be able to release its contents in response to a biologically-relevant 

stimulus. As the nanogels consist of biodegradable disulfide crosslinkers, the release of 

encapsulated molecules can be potentially triggered upon exposure to reducing agents. 

To test this possibility, we utilized NG2 that exhibited very stable encapsulation. 

Glutathione (GSH, 10 mM), a disulfide reducing agent present at higher concentrations 

inside cells, was added to the solution containing NG2-DiO and NG2-DiI after 2.5 h. 

Significant increase of the FRET ratio was observed at this point (Figure 3a and 3b). 

This is presumably caused by dye leakage upon cleavage of the disulfide crosslinkers 

due to the presence of GSH, which loosens the gel and reduces encapsulation stability. 
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Moreover, significant decreases in the emission intensities of the individual dyes 

indicate that the GSH reaction reduces the distribution coefficient of these dyes as well 

(Figure 3.11). These results, combined with experiments with NG3, confirm that the 

dynamics of guest interchange can be controlled by crosslinking density and that drug 

release can be externally triggered (Figure 3.6).   

 

Figure 3.6: Release of dye from mixed nanogels encapsulating DiI/DiO with the 
addition of GSH (10 mM) at 2.5 h: (a) NG2, (b) NG3, (c) dynamics of dye exchange in 
the presence/absence of GSH (10 mM). 

3.3 Summary 

In summary, we have developed on a FRET-based method to monitor the guest 

exchange dynamics in water-soluble nanoassemblies, which provides insight into the 
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leakage characteristics of these nanocontainers. We have thus defined a leakage 

coefficient parameter, Λ, from the FRET experiments and analyzed this value for a 

variety of nanoassemblies. We find that the guest exchange is slower in crosslinked 

polymer nanogels and that this can be conveniently tuned by altering the degree of 

crosslinking. We have also investigated the relative guest exchange rates in other 

amphiphilic nanoassemblies. We find that while pluronic block copolymers exhibit 

higher encapsulation stabilities compared to small molecules and random copolymers, 

they do not compare to those offered by crosslinked polymer nanogels. In addition, we 

show that the stably encapsulated guests in the nanogels can be released in response to 

an external trigger. The dyes employed model the hydrophobic nature of efficacious 

drug molecules that commonly face solubility issues during administration. Thus, 

understanding the dynamics of encapsulated guest exchange between nanocarriers, 

using this method, provides a useful starting point for evaluating viable drug delivery 

vehicles. Moreover, the exchange dynamics provide information on the possibility of 

utilizing a vehicle to deliver multiple drugs in separate containers with timed release. 

These FRET-based studies also highlight the advantages of the newly developed 

polymeric nanogels in drug delivery applications.   

3.4 Experimental  

Materials and Methods 

All chemicals and solvents were purchased from commercial sources and were 

used as received, unless otherwise mentioned.   Pluronic block copolymer P85 (lot no. 

WPDF512B) was provided as a gift by the BASF corporation (Mount Olive, NJ). 

Polymer P1 was synthesized by RAFT polymerization and then purified by 
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precipitation. S-dodecyl-S’-2-(2,2-dimethylacetic acid) trithiocarbonate and 

pyridyldisulfide ethylmethacrylate (PDSEMA) was prepared using a previously 

reported procedure.(Lai, Filla et al. 2002; Ghosh, Basu et al. 2006) 1H-NMR spectra 

were recorded on a 400 MHz Bruker NMR spectrometer using the residual proton 

resonance of the solvent as the internal standard. Chemical shifts are reported in parts 

per million (ppm). Molecular weights of the polymers were estimated by gel permeation 

chromatography (GPC) using PMMA standard with a refractive index detector. 

Dynamic light scattering (DLS) measurements were performed using a Malvern 

Nanozetasizer.  UV-visible absorption spectra were recorded on a Varian (model EL 

01125047) spectrophotometer.  The fluorescence spectra were obtained from a JASCO 

FP-6500 spectrofluorimeter. Transmission electron microscopy (TEM) images were 

taken using a JEOL 100CX at 100 KV. 
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Synthesis of random copolymer (P1): 

 

The polymer (P1) was synthesized by similar method which is published 

elsewhere.(Ryu, Jiwpanich et al. 2010) Briefly, a mixture of S-dodecyl-S’-2-(2,2-

dimethylacetic acid) trithiocarbonate (90 mg, 0.3 mmol), PDSEMA (5 g, 20 mmol), 

polyethylene glycol monomethyl ether methacrylate (Mw 450) (4g, 8 mmol) and AIBN 

(10 mg, 0.06 mmol) were dissolved in DMF (10 mL) and degassed by performing three 

freeze-pump-thaw cycles. The reaction mixture was sealed and then transferred into a 

pre-heated oil bath at 70 oC for 12 h. The resultant mixture was dissolved in 

dichloromethane (5 mL) and precipitated in hexane (200 mL). To remove unreacted 

monomers, the precipitate was further dissolved in dichloromethane (5 mL) and 

reprecipitated in ether (200 mL) to yield the random copolymer as a waxy substance. 

Yield: 78%. GPC (THF) Mn: 24.7 K. PDI: 1.6. 1H NMR (400 MHz, CDCl3) δ: 8.40 (a), 

7.62 (c, d), 7.05 (b), 4.16-4.02 (i, f), 3.58-3.48 (i), 3.31 (j), 2.97 (e), 2.04-1.65 (h, h’), 

1.24-0.72 (g, g’). The molar ratio between the two blocks was determined by integrating 

the methoxy proton in the polyethylene glycol unit and the aromatic proton in the 

pyridine and found to be 3:7 (PEO:PDSEMA). The molar ratio between the two blocks 

was determined by integrating the methoxy proton in the polyethylene glycol unit and 

the aromatic proton in the pyridine and found to be 3:7 (PEO:PDSEMA). 

 70



www.manaraa.com

 

Synthesis of nanogels contaning DiI/DiO: 

The polymer (2 mg) and DiI or DiO (0.02 mg) were dissolved in 200 μL of 

acetone and a measured amount of DTT (0.4 μmol, 0.8 μmol and 2.0 μmol for 10 

mol%, 20 mol% and 50 mol% against PDS groups, respectively) was added. The 

solution color changed to yellow, indicative of the production of pyridinethione 

byproduct of PDS cleavage. After stirring for 10 min, 1 mL of deionized water was 

added and the mixed solution was stirred overnight at room temperature, open to the 

atmosphere allowing the organic solvent to evaporate. Insoluble DiI/DiO was removed 

by filtration and pyridinethione was removed from the nanogel solution by extensive 

dialysis using a membrane with a molecular weight cutoff of 10,000 g/mol.  

 

Figure 3.7: Absorption spectra of DiI/DiO in water and in polymer solution. 
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DLS measurement: 

Dynamic light scattering (DLS) measurements were performed using a Malvern 

Nanozetasizer.  The light source was solid-stat laser system, operating at 514 nm.  The 

nanogels in deionized water (1mg/mL) was kept constant at 25 °C throughout the 

experiment.  Dust was eliminated by filtering the solution through 0.45 µm filter.  All 

the measurements were done at a correlation time of 30 seconds.  

500 nm500 nm

 

Figure 3.8: TEM image of nanogel (NG2). 

Micelle encapsulated dye (DiI/DiO) preparation:   

A stock solution of dye (3 mg/mL) in acetone was taken (13 µL) in a vial and 

the solvent was evaporated by a mild blow of argon gas.  To this vial, a 2 mL solution 

of the surfactant (concentration well above CMC: CTAB = 2 mM; tween80 =0.03 mM, 

polymer micelle = 300 mg/L; Pluronic P85 = 1%wt) was added and the solution was 

sonicated for 30 minutes to encapsulate the dye.  Insoluble DiI/DiO was removed by 

filtering the solution through 0.45 µm filter.   
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Nanogel encapsulated dye mixing: 

A solution of nanogel containing DiI (100 µL) was mixed with a solution of 

nanogel containing DiO (100 µL) in a cuvette, and then milliQ water (800 µL) was 

added to adjust the volume.  The fluorescence intensity was recorded at 450 nm 

excitation wavelength. 

Nanogel encapsulated dye mixing in the presence of GSH: 

A solution of nanogel containing DiI (100 µL) was mixed with a solution of 

nanogel containing DiO (100 µL), and milliQ water (800 µL) in a cuvette. GSH (3 mg) 

was added to the mixed solution at 2.5 hours of mixing. The fluorescence intensity was 

recorded at 450 nm excitation wavelength at time interval.  
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Figure 3.9: Fluorescence spectra (λex = 450 nm) of mixed nanogels (left), nanogel 
containing DiO (middle) and nanogel containing DiI (right); (a) non-crosslinked 
polymer (P1), (b) NG1, (c) NG2, and (d) NG3. 
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Figure 3.10: Plot of normalized FRET ratio vs time of (a) NG1, (b) NG2, (c) NG3, (d) 
comparing the dynamics of leakage/interchange of NG1, NG2, and NG3. 

 

Figure 3.11: Fluorescence spectra (λex = 450 nm) of mixed nanogels (left), nanogel 
containing DiO (middle) and nanogel containing DiI (right) with GSH (10 mM) added 
at 2.5h; (a) NG2, and (b) NG3.  
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Micelle encapsulated dye mixing:  

A solution of micelle containing DiI (0.5 mL) was added to a solution of micelle 

containing DiO (0.5 mL).  The fluorescence intensity was recorded at 450 nm excitation 

wavelength.  

 

Figure 3.12: Fluorescence spectra (λex = 450 nm) of mixed micelle containing DiI and 
DiO (left), micelle containg DiO (middle), and micelle containing DiI (right); (a) 
CTAB, (b) Tween80, (c) Amphiphilic random copolymers, and (d) Pluronic P85. 
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CHAPTER 4 

 
TUNING LOADING CAPACITY AND ENCAPSULATION STABILITY 

4.1 Introduction 

Nearly one-third of newly discovered drug compounds are highly insoluble in 

water.(Lipinski 2000) However, designing water-soluble, nanoscopic drug delivery 

vehicles to non-covalently encapsulate such lipophilic molecules and stably transfer 

them to target sites still stands as a significant challenge.(Allen and Culis 2004; 

Torchilin 2004; Farokhzad and Langer 2009) For drugs administered orally or through 

systemic injection, this challenge must be overcome, as low aqueous solubility severely 

limits bioavailability and causes non-specific accumulation in healthy tissues that gives 

rise to adverse side effects.(Lipinski, Lombardo et al. 2001; Savić, Eisenberg et al. 

2006)  

Self-assembling polymer micelles are one promising scaffold for lipophilic drug 

formulation due to their core-shell structure that allows for the sequestration of 

lipophilic molecules into a hydrophobic core that is surrounded by a water-soluble 

corona.(Kabanov, Nazarova et al. 1995; Torchilin 2004; Matsumura 2008; Kale, 

Klaikherd et al. 2009) However, polymer micelles exhibit inherent stability issues 

derived from their concentration-dependent stabilities.(Bae and Yin 2008; Jiwpanich, 

Ryu et al. 2010) The requisite concentration for micelle formation (CMC) severely 

limits the potential for the use of micelles in vivo, as mass dilution during 

biodistribution will cause gradual disintegration of the assemblies into their polymer 

constituents.(Chen, Kim et al. 2008; Kim, Shi et al. 2010) Additionally, interactions 
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between micelles and biological components will likely compromise the integrity of the 

self-assembling particles, resulting in undesirable release of encapsulated guest 

molecules at off-target sites.(Chen, Kim et al. 2008) Furthermore, as discussed in 

Chapter 3, the encapsulation stability of hydrophobic compounds sequestered in 

micellar assemblies has been shown to be relatively poor.(Jiwpanich, Ryu et al. 2010)  

The chemically cross-linked counterparts of polymer micelles, polymer 

nanogels, offer the potential to overcome these issues.(Hamidi, Azadi et al. 2008; Oh, 

Drumright et al. 2008; Kabanov and Vinogradov 2009; Raemdonck, Demeester et al. 

2009; Ryu, Chacko et al. 2010; Vinogradov 2010) We have described in Chapter 2 that 

our synthetic method for self-cross-linked polymer nanogels provides an alternative 

carrier scaffold that affords the noncovalent trapping of lipophilic molecules in aqueous 

media with high encapsulation stability.(Jiwpanich, Ryu et al. 2010; Ryu, Chacko et al. 

2010; Ryu, Jiwpanich et al. 2010) In this Chapter, we are particularly interested in 

optimizing our cross-linked polymer nanogel system for the solubilization of lipophilic 

guests by tuning the hydrophobicity of the nanogel network. We describe the effect of 

varying the lipophilic content of the polymer nanogels on observed loading capacities 

and encapsulation stabilities. We hypothesized that increasing hydrophobicity in 

nanogel interior would enhance the loading capacity and efficiency for lipophilic 

molecules. 
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Figure 4.1: Cartoon representation of self-cross-linked nanogels with lipophilic guest 
encapsulation. 

The nanogel delivery system we have discussed in Chapters 2 and 3 is based on 

random copolymers that contain oligoethyleneglycol (OEG) and pyridyldisulfide (PDS) 

units. In order to vary the hydrophobicity inside the cores of the self-cross-linked 

nanogel networks, the polymer precursor will be modified with lipophilic alkyl groups 

as additional side chain functionalities (Figure 4.1). The consequences of the induced 

changes in the hydrophobic-lipophilic balance (HLB) of the polymer aggregates, and 

thus the obtained nanogel carriers, to loading capacity and encapsulation stability is 

investigated using the FRET based method described in Chapter 3. We expected that: (i) 

the use of a random copolymer containing hydrophilic and lipophilic functionalities as a 

nanogel precursor will allow for aggregate formation prior to cross-linking; (ii) 

increasing the contribution of the hydrophobic alkyl component will provide enhanced 

lipophilic guest encapsulation capacity; (iii) the encapsulation stability of lipophilic 

guest molecules trapped inside the cross-linked nanogel networks can be tuned by 

varying the hydrophobicity of the precursor polymers. 
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4.2 Results and Discussion 

4.2.1 Design and Synthesis 

In order to test the effect of varying hydrophobicity on the various parameters 

of lipophilic encapsulation in our self-cross-linked nanogel system, amphiphilic random 

copolymer precursors with varying hydrophobic content were synthesized. Drawing 

from our previously explored PEG-PDS copolymer, which used the contained PDS side 

chains as a handle for the cross-linking of the nanogel structure, polymer precursors for 

these studies were designed to contain a constant amount of the PDS functionality that 

was determined sufficient to achieve to self-cross-linking reaction. The OEG units were 

again included as water soluble, biocompatible functionalities and constituted the major 

hydrophilic content of the precursor polymers. To achieve precursor polymers with 

variable hydrophobic content, lipophilic alkyl chain functionalities were added to the 

OEG-PDS composition. The relative hydrophobicities of the precursor polymers were 

varied in two different manners: (i) by varying the length of the alkyl chain contained in 

the incorporated comonomer and (ii) by altering the ratio of comonomers containing a 

constant length alkyl chain to those containing the hydrophilic OEG group. The 

synthesized polymer structures are shown in Chart 4.1. Both sets of polymer nanogel 

precursors were prepared by reversible addition-fragmentation chain transfer (RAFT) 

polymerization.  

For the first series, four polymers (P1-P4) were prepared to contain 50% of the 

OEG methacrylate, 20% of the PDS-derived methacrylate, and 30% of alkyl 

methacrylate. Within this polymer series, the alkyl chain (denoted by R in Chart 4.1a) 
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length is varied to generate polymers P1 (R = butyl), P2 (R = hexyl), P3 (R = octyl), 

and P4 (R = decyl).     

 

Chart 4.1: Structures of polymer precursors. 

For the second series, two additional polymers (P5-P6) were prepared with 

varying percentages of the incorporated alkyl-containing comonomer. For this purpose, 

we chose the decylmethacrylate comonomer as the lipophilic side chain and varied the 

ratio of this hydrophobic commoner to OEG while keeping the PDS monomer at a 

constant 20 mol%. Combining polymer P4 from the first series with polymers P5 and 

P6, a series was generated in which the ratio of OEG methacrylate to decylmethacrylate 

to PDS methacrylate was made to equal 50%:30%:20%, 40%:40%:20% and 

30%:50%:20%, respectively. 

Since polymers P1-P6 contain both hydrophobic alkyl groups and hydrophilic 

OEG side chain units, these polymers were observed to exhibit core-shell like 

structures, similar to those observed with micellar assemblies, when they were allowed 

to self-assemble in aqueous solution. Such aggregation of the amphiphilic random 
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copolymers generated assemblies with lipophilic cores that could accommodate the 

sequestration of lipophilic guest molecules in water. Using the procedure described in 

Chapter 3, two FRET pair dye molecules (DiI and DiO) were independently loaded into 

the cores of these polymer aggregates. Subsequent addition of the reducing agent, DTT 

(0.5 equivalents with respect to PDS groups in the precursor polymer), activated the 

intra/interchain disulfide bond formation that has been shown to generate the cross-

linked polymer nanogel structure (Scheme 4.1). Polymer nanogels, NG1-NG6, were 

prepared from the polymer precursors, P1-P6, respectively. Performing this preparation 

in the presence of either DiI or DiO allowed these lipophilic dyes to efficiently 

accumulate within the hydrophobic cores of the formed polymer aggregates, achieving 

noncovalent encapsulation within the obtained water soluble nanogel carriers after 

crosslinking.  

 
Scheme 4.1: Synthesis of the self-cross-linked polymer nanogels from precursor 
polymers containing OEG, PDS and hydrophobic alkyl groups. 

We investigated the aggregation sizes of polymers P1-P6 in water prior to cross-

linking by dynamic light scattering (DLS), as it was hypothesized that the sizes of these 

assemblies would dictate the sizes of the obtained nanogels (NG1-NG6).  Solutions of 

polymers P1-P6 (10 mg.mL-1) in water displayed assembly sizes with diameters 
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centered at around 10 nm by volume based DLS measurement (Figure 4.2a). The 

nanogels formed from these polymer precursors exhibited similar sizes to those 

observed for their corresponding aggregates with the exception of the butylmethacrylate 

containing NG1, which showed a larger size centered at around 200 nm diameter 

(Figure 4.2b). It is hypothesized that this discrepancy may be due to a lack of stable 

polymer aggregation exhibited by P1. Polymer P1 contains 30% of the 

butylmethacrylate side chain, which is the shortest lipophilic side chain used in the 

present work. Considering the contribution to the overall aggregate HLB from the 50% 

of hydrophilic OEG segments, it is likely that this butyl chain does not sufficiently 

stabilize the observed 10 nm polymer aggregate. Such instability increases the 

probability of interaggregate cross-linking occurring during the DTT initiated reaction, 

resulting in a larger polymer nanogel than those formed from the more stabilized 

aggregates of polymers P2-P6. 

 
 

Figure 4.2: Size distributions in water by volume based DLS for a) polymer aggregates 
of P1-P6 (10 mg.mL-1) and b) self-cross-linked polymer nanogels, NG1-NG6. 
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4.2.2 Hydrophobic Effect on Loading Capacity  

Dominated by the hydrophobic effect and polymer-drug miscibility, loading in 

polymer micelles has been shown to be highly dependent on HLB, with enhanced 

loading observed when the length or density of the hydrophobic block is increased.(Li, 

Danquah et al. 2010) Considering this fact, we were interested in tuning the loading 

capacity for lipophilic guest molecules in our polymer nanogel system by varying the 

hydrophobic content of our nanogel constructs. To investigate this possibility, the 

polymer series P1-P6 described above was synthesized. Nanogels, NG1-NG6, were 

prepared from these polymers using the DTT initiated crosslinking reaction in the 

presence of either DiI or DiO to afford noncovalent encapsulation of one of the FRET 

pair dyes within the nanogel interior. Polymer nanogels, NG1-NG4, were separately 

loaded in situ with DiI and DiO using 2 wt% of the lipophilic dyes. After filtering off 

unencapsulated dye molecules and removing the pyridothione crosslinking reaction 

byproduct by dialysis, the extent of guest encapsulation in solution of mixed DiI and 

DiO samples was measured by UV-Vis spectroscopy. The absorption spectra (solid 

lines) of these dye loaded nanogels, shown in Figure 4.3, reveal a clear trend of 

increasing dye encapsulation as the length of the lipophilic alkyl chain is increased from 

butyl (NG1) to decyl (NG4).  This is attributed to the increasingly hydrophobic 

environment created by these alkyl chains within the nanogel cores that can favorably 

accommodate liphophilic guests. 
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Figure 4.3: Hydrophobic effect of cross-linked polymer nanogels on loading capacity:    
2 wt% of dye feeding solution (solid line); 10 wt% of dye feeding (broken line). 

While this trend is rather clear, two questions may be raised from these spectra. 

The first is the clear difference in spectrum shape of the dye pair encapsulated in NG1 

from that observed in with all other nanogel solutions. While the exact cause of this 

discrepancy is unclear, we expect that it is an effect of a very different core environment 

in this nanogel structure; a combination of the loose packing of the short butyl chain 

and the larger size (~200 nm) of the nanogels makes the interior of NG1 relatively 

hydrophilic as compared to the rest of the series, a feature which likely alters the 

absorbance characteristics of the encapsulated dye molecules. 

Second is the similarity in absorbance of the dyes encapsulated within the decyl 

containing NG4 and those encapsulated within the octyl containing NG3. This suggests 

that these two polymers display similar loading with an equal feed amount of dye. 

However, we hypothesize that this 2 wt% dye feeding, while above the 100% loading 

efficiency thresholds of NG1-NG3, was at a point where the loading efficiency of NG4 

was near 100%. In this case, the apparent loading capacity of NG4 may have been 

limited by the feeding dye concentration. We tested this hypothesis by increasing the 
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feed concentration of dye from 2 wt% to 10 wt%. The enhanced dye encapsulation 

observed with NG4 (broken red line) confirms that 2 wt% is well below the dye amount 

that this nanogel can absorb with nearly perfect loading efficiency and that more dye 

can be encapsulated (with less than 100% efficiency) when higher dye concentration is 

used during preparation. 

We were also interested in investigating the hydrophobic effect on loading 

capacity with the NG4-NG6 series, in which the nanogel hydrophobicity was varied by 

altering the ratio of decyl chains to OEG units. Dye loaded NG4-NG6 were prepared by 

in situ loading of 10 wt% DiI or DiO during the DTT crosslinking reaction. The 

obtained nanogels, all of constant crosslinking degree, contain OEG:decyl ratios of 

50:30 (NG4), 40:40 (NG5) and 30:50 (NG6). Analysis of the spectra shown in Figure 

4.3 (broken lines), reveals increasing dye encapsulation as the relative percentage of the 

decylmathecrylate monomer in the precursor polymer is increased. Similar to the effect 

of increasing the length of the alkyl chain, increasing the amount of decyl chains within 

the polymer enhances the hydrophobicity of the interior of the formed aggregates and 

creates an increasingly preferential nanogel core for the encapsulation of lipophilic 

guest molecules. Interestingly, NG4 in this series exhibited much higher encapsulation 

than its counterpart in the first series, suggesting that 2 wt% was well below its maximal 

loading capacity. 

4.2.3 Hydrophobic Effect on Encapsulation Stability 

 Having demonstrated that the loading capacity for lipophilic guest molecules 

can be tuned in our nanogel system by introducing hydrophobic variations into the 

precursor polymers, we were next interested in investigating the consequences that such 
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variations would have on the encapsulation stabilities in the prepared nanogel carriers. 

For this purpose, we have used our FRET based method described in Chapter 3 to 

quantitatively compare the encapsulation stabilities exhibited by dye loaded nanogels, 

NG1-NG6. The same nanogel samples used for the analysis of loading capacities were 

used in these experiments. Nanogel samples containing encapsulated DiI were mixed 

with those containing DiO and the evolution of FRET between the dye pair, indicated 

by concomitant decrease in donor (DiO) intensity at 505 nm and increase in acceptor 

(DiI) intensity at 568 nm, was followed over a 24 hour period. 

It was hypothesized that the by increasing the hydrophobicity of the nanogel 

core through variations to the precursor polymer we would be able to enhance not only 

the loading capacities of the obtained carriers, but also the encapsulation stability of 

lipophilic guests sequestered within the nanoassemblies. This was based on the thought 

that an increasingly hydrophobic core would provide a better environment for the 

solubilization of lipophilic guests, enhancing the ability of the nanogel to hold on to its 

guest molecules and limiting exchange with the aqueous bulk environment.  
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Figure 4.4: Fluorescence spectra (λex = 450 nm) of mixed nanogels containing DiI and 
DiO prepared with 2 wt% dye loading: a) NG1, b) NG2, c) NG3, and d) NG4. 

 This was first tested with the NG1-NG4 series, which was prepared with 2 wt% 

feeding of the dyes. The time-dependent FRET evolution for these nanogels is plotted in 

Figure 4.4. Interestingly, the recorded FRET development behaviors did not support our 

originally proposed hypothesis. In fact, analysis of NG1-NG3 indicates the exact 

opposite trend, with a more rapid rate of FRET evolution being observed as the length 

of the incorporated alkyl chain increases from butyl to hexyl to octyl (Figure 4.4 a, b, c). 

However, it is also noted from these plots that the FRET evolution for the decyl 

containing NG4 (Figure 4.4d) deviates from this trend. As this NG4 sample was 

previously shown to be well below its maximal loading capacity, an alternate 

hypothesis, taking into account the observed effects on both encapsulation capacity and 

stability, was formulated to explain this behavior. 
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It was demonstrated in the previous section that the capacity for lipophilic 

encapsulation is enhanced as the length of the alkyl chain within the polymer nanogel is 

increased. The amphiphilic nature of the precursor polymer is thought to induce 

formation of a micelle-type aggregate, in which the majority of hydrophobic content is 

buried within the core of the self-assembling construct. If this is the case, a likely 

feature of lipophilic encapsulation in these systems is that initially sequestered guest 

molecules accumulate deep within the core and gradually move out towards the 

assembly periphery as core volume is filled. The extent of such peripheral loading in 

this system will necessarily be dependent on the nature (length and density) of the 

hydrophobic units dispersed throughout the random compolymer network and the 

amount of dye used during the nanogel preparation. Thus, as the length of the alkyl 

chain is increased from NG1 to NG4, the observed increase in loading capacity could 

be due, in part, to an enhanced ability to load lipophilic dye molecules closer to the 

nanogel surface. However, it is also a reasonable assumption that these peripherally 

loaded dye molecules will be those that are least stably encapsulated and most easily 

exchange with the bulk environment. This would explain why enhanced loading 

observed going from NG1 to NG3 translates to faster FRET evolution and less stable 

encapsulation. It would also rectify the apparent aberration with NG4, as the majority of 

the 2 wt% dye used is likely stably encapsulated within the core of this nanogel, which 

is below its maximal capacity, and does not leak out into the aqueous exterior.  

To test this hypothesis, we investigated the encapsulation stability of the NG4-

NG6 series prepared using 10 wt% of DiI and DiO. According to the new hypothesis, 

we expected to observe faster rates of FRET exchange with greater dye loading caused 
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by an increasing relative amount of the decyl unit in nanogels NG4 to NG6. We were 

gratified to observe that this was indeed the case. NG4, containing a 50:30 ratio of OEG 

to decyl chain, exhibited the lowest dye encapsulation with the 10 wt% feeding but also 

displayed gradually increasing FRET over the tested 24 hour period (Figure 4.5a). NG5, 

with a ratio of 40:40, encapsulated an intermediate amount of dye and exhibitied much 

faster FRET development (Figure 4.5b). Finally, NG6, containing a 30:50 ratio, 

encapsulated the highest amount of dye and displayed a very rapid burst of FRET 

evolution, with the majority of exchange occurring within the first three hours of the 

experiment (Figure 4.5c). 

 
Figure 4.5: Fluorescence spectra  (λex = 450 nm) of mixed nanogels encapsulated DiI 
and DiO prepared with 10% dye loading; a) NG4, b) NG5, and c) NG6. 

 The apparent inverse relationship between loading amount and encapsulation 

stability is clearly seen in the plots of FRET ratio vs. time for the NG1-NG4 and NG4-

NG6 series (Figure 4.6). The FRET ratio Ia/(Id+Ia), where Ia and Id are the fluorescence 

intensities of the acceptor (DiI) and the donor (DiO), respectively, is a used as a 

quantitative comparison of the extents of dye leakage observed for each nanogel 

sample. As described in Chapter 3, the development of FRET between the 

independently sequestered DiO and DiI molecules is dependent on leakage from the 

nanocarrier in which they were originally encapsulated and subsequent uptake by a 
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different container in the aqueous solution. This will cause increasing accumulation of 

both DiO and DiI within their Förster radius in the cores of the same nanocarrier, 

leading to increased energy transfer between the two dyes. While the data reported in 

this section supports the hypothesis of loading dependent encapsulation stability, there 

exists an alternate explanation that must be addressed.  

 

Figure 4.6: Plot of FRET ratio vs time; a) chain length variation prepared from 2 wt% 
dye stock solution, b) alkyl group percentage variation prepared from 10 wt% (solid 
link) and 2 wt% (dot line) of dye stock solution. 

 The observed development of FRET using this method is dependent on the 

relative rates of two distinct events. The first is the leakage of dye molecules from the 

interior of the originally encapsulating nanogel into the aqueous exterior. The second is 

the re-encapsulation of leaked dye molecules into the interior of some nanogel present 

in solution. While increasing the hydrophobicity of the nanogel material has been 

shown to limit the first process, it is also possible that it has an effect on the second 

process. Specifically, increasing hydrophobicity of the nanogel could enhance its ability 

to sequester leaked dye molecules from the aqueous environment. The fact that no 

significant changes in either dye’s absorbance were observed with any sample over the 
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lifetime of the experiment (Figure 4.7) suggests that this is not the case. However, it 

could be that the increasingly hydrophobic nanogels tend to re-encapsulate within their 

core, causing close proximity of the sequestered dyes, whereas lower hydrophobicity 

only affords uptake from the exterior along the surface of the nanogel.   

 

Figure 4.7: Absorbance of mixed nanogels encapsulated DiI and DiO prepared with 
10% dye loading; a) NG4, b) NG5, and c) NG6. 

4.2.4 Correlating Loading Capacity and Encapsulation Stability 

 To distinguish between these two possibilities, an additional experiment using 

nanogels NG4-NG6, which were loaded with a normalized amount of DiI and DiO well 

below the maximal loading capacities of these decyl containing gels, was performed. 

The nanogel samples were prepared using 1 wt% of the two dyes. UV-vis absorbance 

spectra taken of the purified samples (Figure 4.8) reveal an equal level of encapsulation 

in all three nanogels, which was calculated to correspond to nearly 100% encapsulation 

efficiency.  
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Figure 4.8: Dye encapsulation in samples of mixed NG4-NG6 prepared using 1wt% of 
both DiI and DiO. 

 The DiI and DiO containing samples were mixed and the FRET development for 

these normalized loading nanogels was monitored. This experiment was performed to 

test the hypothesis of loading dependent encapsulation stability. With all tested samples 

being normalized to a dye amount well below their maximal encapsulation capacity, we 

expected the true effect of increasing nanogel hydrophobicity on encapsulation stability 

to determine the rate of guest exchange. Thus, if our hypothesis were true, we expected 

that the enhanced lipophilicity of the nanogel core provided by an increasing number of 

decyl chains in the precursor polymer would allow for more stable guest encapsulation, 

preventing exchange with the bulk exterior and limiting the development of FRET. If 

the alternate possibility were true, any leakage from the more hydrophobic samples 

would lead to an increase in FRET due to the enhaced abilities of these nanogels to 

uptake leaked guests from the aqueous exterior.  

 The plots of FRET development observed for NG4-NG6 (Figure 4.9) support 

the first case, revealing decreased FRET development over time as the percentage of 

decyl group within the nanogel is increased. NG4, containing 30% of the decyl unit, 

displays a gradual, sustained increase in FRET over the tested 72 hour period (Figure 
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4.9a). NG5, containing 40% of the decyl chain, displays enhanced encapsulation 

stability, only beginning to show FRET development at 24 hours after mixing (Figure 

4.9b). Finally, the 50% decyl containing NG6 displays superior encapsulation stability, 

with no observed FRET development over the tested 72 hour period (Figure 4.9c). 

These results clearly demonstrate the effect of increasing hydrophobicity on the 

encapsulation stability exhibited by our nanogel carriers. Specifically, at less than 

maximal loading capacity, introducing hydrophobic groups into the nanogel scaffold 

can be used to greatly enhance the encapsulation stabilities of these nanoscopic carriers. 

 
 

Figure 4.9: Fluorescence spectra  (λex = 450 nm) of mixed nanogels encapsulated DiI 
and DiO prepared with 1 wt% dye loading; a) NG4, b) NG5, and c) NG6. 

4.3 Summary 

In this Chapter, we have examined the effect of hydrophobic composition on 

the container properties of our nanogel system, specifically in reagrds to loading 

capacity and encapsulation stability. Modifying the previously explored PEG-PDS 

copolymer to contain hydrophobic alkyl groups, two series of random copolymers were 

generated. The hydrophobicity of the first series, NG1-NG4, was varied by altering the 

length of the alkyl chain incorporated into the precursor polymers from butyl to decyl 

with two carbon increments. The hydrophobicity of the second series, NG4-NG6, was 
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varied by targeting OEG:decyl ratios within the polymers of 50:30, 40:40 and 30:50 

while keeping the PDS unit at a constant 20%.  

By carrying out the DTT initiated crosslinking reaction in the presence of the 

lipophilic dyes, DiI or DiO, we were able to achieve in situ loading within the interiors 

of the formed nanogels. The loading capacity and efficiency was shown to be directly 

dependent on the hydrophobicity of the nanogel composition. Specifically, the loading 

capacities of these nanogel carriers can be enhanced by increasing the hydrophobic 

content of the structures, either through size or density of the incorporated lipophilic 

functionalities. 

Nonetheless, encapsulation stability at maximal loading was observed to 

decrease as the hydrophobicity within the nanogels increased. Enhanced loading in a 

more hydrophobic nanogel is due, in part, to increased peripheral loading of the dye 

molecules. As a result, highly hydrophobic nanogels that were loaded with dye well 

below their maximal loading capacities were able to hold on to their encapsulated 

guests molecules with enhanced stabilities. 

These results provide crucial insight into the optimization of loading paramters 

for this nanogel system and other nanoscopic delivery vehicles.  Notably, this work 

suggests that loading capacity and encapsulation stability cannot be maximized 

simultaneously, with an optimal balance occurring well below the maximal loading 

capacity of a given nanocarrier. As one of the major focuses in the future development 

of nanoparticle enabled drug delivery systems is the improvement of loading capacity, 

this trade off must be taken as a crucial consideration. It should be noted that the 

nanogels employed in this study were designed to explore the structure-property 
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relationship between scaffold hydrophobicity and container ability. Emphatically, these 

nanogels were not optimized for the loading capacities or efficiencies required for any 

biologically relevant applications. Nonetheless, we believe that the observed loading 

depedent encapsulation stability behavior is a basic property of the nanoscopic vehicle 

and its implications will translate to other carrier scaffolds. The reported FRET based 

system is a rather robust method, capable of detecting guest molecule leakage in cases 

where UV-vis, simple fluorescence, and traditional FRET based experiments yield a 

false impression of in vitro encapsulation stability. This method may be widely 

employed to determine an optimal balance of stable lipophilic guest molecule loading 

for nanoscopic drug delivery vehicles. 

4.4 Experimental  

Materials and Methods 

All chemicals and solvents were purchased from commercial sources and were 

used as received, unless otherwise mentioned. Polymers P1-P6 were synthesized by 

RAFT polymerization and purified by precipitation. S-dodecyl-S’-2-(2,2-dimethylacetic 

acid) trithiocarbonate and pyridyldisulfide ethylmethacrylate (PDSEMA) were prepared 

using  previously reported procedures.(Lai, Filla et al. 2002; Ghosh, Basu et al. 2006) 

1H-NMR spectra were recorded on a 400 MHz Bruker NMR spectrometer using the 

residual proton resonance of the solvent as the internal standard. Chemical shifts are 

reported in parts per million (ppm). Molecular weights of the polymers were estimated 

by gel permeation chromatography (GPC) using a PMMA standard with a refractive 

index detector. Dynamic light scattering (DLS) measurements were performed using a 

Malvern Nanozetasizer.  UV-visible absorption spectra were recorded on a Varian 
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(model EL 01125047) spectrophotometer.  The fluorescence spectra were obtained 

using a combination of PTI and JASCO FP-6500 spectrofluorimeters.  

General procedure for Syntheses of random copolymers:  

O O O
O

O

O
R

O

S
S

N

9

x y z

O

O

O

9

O
R

O
O

S
S

O

N

+ + CTA, AIBN

THF, 70 oC, 12h

 

Briefly, a mixture of S-dodecyl-S’-2-(2,2-dimethylacetic acid) trithiocarbonate (CTA), 

PDSEMA, poly(ethylene glycol) methyl ether methacrylate (PEGMA, Mw 475), the 

alkyl chain derived methacrylate monomer and AIBN were dissolved in THF and 

degassed by performing three freeze-pump-thaw cycles. The reaction mixture was 

sealed and transferred into a pre-heated oil bath at 70 oC for 12 h. The resultant mixture 

was dissolved in dichloromethane (0.1 mL) and precipitated in hexane (5 mL). To 

remove unreacted monomers, the precipitate was further dissolved in dichloromethane 

(0.1 mL) and reprecipitated in ether (5 mL) to yield the random copolymer as a pale 

yellow, waxy substance.  
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Synthesis of P1: 
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 According to general procedure for synthesis of random copolymers, a mixture 

of CTA (14.0 mg, 0.04 mmol), PDSEMA (200 mg, 0.78 mmol), PEGMA (930 mg, 1.9 

mmol), butylmethacrylate (170 mg, 1.2 mmol) and AIBN (1.3 mg, 7.8 µmol) were 

polymerized in THF (2.6 mL). GPC (THF) Mn: 55K. PDI: 2.2. 1H NMR (400 MHz, 

CDCl3) δ 8.44 (a), 7.66 (b), 7.10 (c), 4.20 (d), 4.05 (e), 3.89 (f), 3.60 (g), 3.34 (h), 3.00 

(i), 2.04-1.80 (j), 1.80-1.22 (k), 1.01-0.78 (l). The molar ratio between the three blocks 

was determined by integrating the methoxy proton in the polyethylene glycol unit, 

methoxy proton in alkyl derived methacrylate, and the aromatic proton in the pyridine 

and found to be 5:3:2 (PEO:ButylMA:PDSEMA). 
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Synthesis of P2: 
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According to general procedure for synthesis of random copolymers, a mixture 

of CTA (14.0 mg, 0.04 mmol), PDSEMA (200 mg, 0.78 mmol), PEGMA (930 mg, 1.9 

mmol), hexylmethacrylate (200 mg, 1.2 mmol) and AIBN (1.3 mg, 7.8 µmol) were 

polymerized in THF (2.7 mL). GPC (THF) Mn: 38K. PDI: 1.5. 1H NMR (400 MHz, 

CDCl3) δ 8.48 (a), 7.70 (b), 7.13 (c), 4.22 (d), 4.08 (e), 3.91 (f), 3.64 (g), 3.37 (h), 3.04 

(i), 2.10-1.60 (j), 1.40-1.20 (k), 1.10-0.78 (l). The molar ratio between the three blocks 

was determined by integrating the methoxy proton in the polyethylene glycol unit, 

methoxy proton in alkyl derived methacrylate, and the aromatic proton in the pyridine 

and found to be 5:3:2 (PEO:HexylMA:PDSEMA). 
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Synthesis of P3: 
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According to general procedure for synthesis of random copolymers, a mixture 

of CTA (14.0 mg, 0.04 mmol), PDSEMA (200 mg, 0.78 mmol), PEGMA (930 mg, 1.9 

mmol), octylmethacrylate (230 mg, 1.2 mmol) and AIBN (1.3 mg, 7.8 µmol) were 

polymerized in THF (2.7 mL). GPC (THF) Mn: 41K. PDI: 1.4. 1H NMR (400 MHz, 

CDCl3) δ 8.48 (a), 7.70 (b), 7.13 (c), 4.22 (d), 4.08 (e), 3.91 (f), 3.64 (g), 3.37 (h), 3.04 

(i), 2.10-1.60 (j), 1.40-1.20 (k), 1.20-0.78 (l). The molar ratio between the three blocks 

was determined by integrating the methoxy proton in the polyethylene glycol unit, 

methoxy proton in alkyl derived methacrylate, and the aromatic proton in the pyridine 

and found to be 5:3:2 (PEO:OctylMA:PDSEMA). 
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Synthesis of P4: 
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According to general procedure for synthesis of random copolymers, a mixture 

of CTA (14.0 mg, 0.04 mmol), PDSEMA (200 mg, 0.78 mmol), PEGMA (930 mg, 1.9 

mmol), decylmethacrylate (270 mg, 1.2 mmol) and AIBN (1.3 mg, 7.8 µmol) were 

polymerized in THF (2.8 mL). GPC (THF) Mn: 49K. PDI: 2.1. 1H NMR (400 MHz, 

CDCl3) δ 8.45 (a), 7.66 (b), 7.10 (c), 4.19 (d), 4.05 (e), 3.88 (f), 3.61 (g), 3.35 (h), 3.04 

(i), 2.10-1.60 (j), 1.50-1.20 (k), 1.10-0.70 (l). The molar ratio between the three blocks 

was determined by integrating the methoxy proton in the polyethylene glycol unit, 

methoxy proton in alkyl derived methacrylate, and the aromatic proton in the pyridine 

and found to be 5:3:2 (PEO:DecylMA:PDSEMA). 
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Synthesis of P5: 
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According to general procedure for synthesis of random copolymers, a mixture 

of CTA (14.0 mg, 0.04 mmol), PDSEMA (200 mg, 0.78 mmol), PEGMA (740 mg, 1.6 

mmol), declmethacrylate (350 mg, 1.6 mmol) and AIBN (1.3 mg, 7.8 µmol) were 

polymerized in THF (2.6 mL). GPC (THF) Mn: 42K. PDI: 2.0. 1H NMR (400 MHz, 

CDCl3)δ 8.43 (a), 7.65 (b), 7.09 (c), 4.18 (d), 4.04 (e), 3.72 (f), 3.70 (g), 3.33 (h), 3.04 

(i), 2.10-1.55 (j,k), 1.48-1.20 (k), 1.10-0.70 (l). The molar ratio between the three blocks 

was determined by integrating the methoxy proton in the polyethylene glycol unit, 

methoxy proton in alkyl derived methacrylate, and the aromatic proton in the pyridine 

and found to be 4:4:2 (PEO:DecylMA:PDSEMA). 
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Synthesis of P6: 
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According to general procedure for synthesis of random copolymers, a mixture 

of CTA (14.0 mg, 0.04 mmol), PDSEMA (200 mg, 0.78 mmol), PEGMA (560 mg, 1.2 

mmol), decylmethacrylate (440 mg, 2.0 mmol) and AIBN (1.3 mg, 7.8 µmol) were 

polymerized in THF (2.4 mL). GPC (THF) Mn: 52K. PDI: 2.2. 1H NMR (400 MHz, 

CDCl3)δ 8.45 (a), 7.65 (b), 7.09 (c), 4.19 (d), 4.05 (e), 3.88 (f), 3.61 (g), 3.34 (h), 3.00 

(i), 2.10-1.50 (j,k), 1.40-1.20 (k), 1.10-0.80 (l). The molar ratio between the three blocks 

was determined by integrating the methoxy proton in the polyethylene glycol unit, 

methoxy proton in alkyl derived methacrylate, and the aromatic proton in the pyridine 

and found to be 3:5:2 (PEO:DecylMA:PDSEMA). 

Synthesis of nanogels contaning DiI/DiO: 

Polymers P1-P6 (2 mg) and DiI or DiO (0.02 mg for 1 wt%, 0.04 mg for 2 wt% 

and 0.2 mg for 10 wt%) were dissolved in 200 μL of acetone and a calculated amount of 

DTT was added. The solution color changed to yellow, indicative of the production of 

pyridinethione byproduct of PDS cleavage. After stirring for 10 min, 1 mL of deionized 

water was added and the mixed solution was stirred overnight at room temperature, 
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open to the atmosphere to allow the organic solvent to evaporate. Insoluble DiI/DiO 

was removed by filtration and pyridinethione was removed from the nanogel solution 

by extensive dialysis using a membrane with a molecular weight cutoff of 10,000 

g/mol.  

DLS measurement: 

Dynamic light scattering experiments were performed by using a Malvern 

Nanozetasizer.  The light source was solid-state laser system, operating at 514 nm.  The 

nanogels in deionized water (1mg/mL) were kept constant at 25 °C throughout the 

experiment.  Dust was eliminated by filtering the solution through 0.45 µm filter.  All 

the measurements were done at a correlation time of 30 seconds.  

Nanogel encapsulated dye mixing:  

A solution of nanogel containing DiI (100 µL) was mixed with a solution of 

nanogel containing DiO (100 µL), and milliQ water (800 µL) in a cuvette.  The 

fluorescence intensity was recorded at 450 nm excitation wavelength. 

Table 4.1: Leakage coefficient (Λ) in supramolecular nanoassemblies. 

Nanogels-loading (wt%) Leakage coefficient (Λ), h-1

NG1-2 wt% 

NG2-2 wt% 

NG3-2 wt% 

NG4-1 wt% 

NG4-2 wt% 

NG4-10 wt% 

NG5-1 wt% 

NG5-10 wt% 

NG6-1 wt% 

NG6-10 wt% 

0.035 

0.053 

0.063 

0.024 

0.021 

0.044 

0.002 

0.091 

-0.001 

0.107 
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CHAPTER 5 

 
SUMMARY AND FUTURE DIRECTIONS 

5.1 Introduction 

This dissertation describes a new class of self-cross-linked polymer nanogels 

which provide a versatile platform for the development of novel nanoscopic drug 

delivery systems. The nanogels were synthesized by intra-/intermolecular disulfide 

cross-linking reaction and provide non-colvalent hydrophobic encapsulation capabilities 

with high encapsulation stability and controlled release of the payload. These cross-

linked polymer nanogels are considered as potential carriers for use in drug delivery 

systems since thier cross-linked nature holds the polymer network together creating 

stable nanocontainers. In addition, the cross-linked polymer nanogels have no 

concentration dependent (CMC) or stability issues commonly observed with classical 

polymeric nanoassemble systems. It is important to note that polymer nanogels are of 

interest in the field of drug delivery and have been reported in the literature recently; 

however, the classical emulsion/inverse emulsion preparation method still faces certain 

complications described in Chapter 1.(Oh, Siegwart et al. 2007; Oh, Tang et al. 2007; 

Hamidi, Azadi et al. 2008; Oh, Drumright et al. 2008; Kabanov and Vinogradov 2009; 

Raemdonck, Demeester et al. 2009; Vinogradov 2010)  

In this dissertation, we mainly focus on the development of a synthetic method 

for cross-linked polymer nanogels for drug delivery systems and utilizing this system 

for lipophilic drug delivery applications. In Chapter 2, we highlight our methodology 

development using intra-/intermolecular disulfide cross-linking with PDS containing 
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polymers. Through the use of a simple inter-/intramolecular self-cross-linking reaction, 

we have elaborated an emulsion-free method for the synthesis of well-defined, 

biocompatible nanogels.(Ryu, Chacko et al. 2010; Ryu, Jiwpanich et al. 2010) This 

cross-linking method is based on the presence of pyridyl disulfide (PDS) units in the 

precursor polymer chain. By addition of deficient amount of the reducing agent DTT, 

we are able to achieve nanogel formation through the formation of cross-linking 

disulfide bonds with hydrophobic encapsulation capabilities. The surface of self-cross-

linked nanogels can be tailored with targeting ligands containing thiol through the 

remaining PDS groups. 

As we mentioned above, the cross-linked nature of nanogels is of great interest 

for the potential drug delivery systems since it provides not only stable nanocarriers but 

also tunable encapsulation stability. In Chapter 3, we detailed a FRET based method as 

a tool to probe the encapsulation stability of non-covalently encapsulated lipophilic 

molecules in self-assembled nanocontainers.(Jiwpanich, Ryu et al. 2010) A FRET pair 

(DiI and DiO) was encapsulated into separate nanocontainers independently, and were 

then mixed. The evolution of FRET, readout for guest exchange dynamics, was 

monitored in the mixed solution. This simple method provides a useful starting point for 

evaluating viable drug delivery vehicles. Based on FRET-based studies, we have shown 

that our self-cross-linked polymer nanogels show high encapusltion stability and the 

release profile of stably encapsulated guest can be tuned by the cross-linking density.  

In order to maximize loading capacity of lipophilic guest molecules in self-

cross-linked polymer nanogels, in Chapter 4, we describe the use of a hydrophobic 

polymer to provide a hydrophobic pocket inside the nanogel network. The increased 
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hydrophobicity of the polymer backbone increases the lipophilic loading capabilities. 

Nonetheless, the maximum loading of lipophilic molecules into self-cross-linked 

polymer nanogels may cause leakage due to the surface bound lipophilic guest 

molecules. We highlight these issues so that the drug molecule leakage will be 

considered as a potential problem and due attention will be paid while designing novel 

nanoscopic carriers for drug delivery. 

The newly developed self-cross-linked polymer nanogels described in this 

dissertation is based on disulfide self-cross-linking reaction and the initial findings of 

the cross-linked polymeric nanogels described here show great promise as therapeutic 

carrier scaffolds. In the following sections, we discuss the ongoing work in our research 

group. 

5.2 Future Directions 

5.2.1 Controlled Release inside Cells 

The two key findings of the self-cross-linked polymer nanogels i.e., the stable 

drug encapsulation, and prevention of premature drug leakage render them great 

potential to carry lipophilic drugs into cancer cells. We are interested in testing the 

release of loaded cargo in the cross-linked polymer nanogels inside the cells having 

high glutathione (GSH) concentration, and also in delivering lipophilic cancer drugs 

into tumor cells.  The preliminary results demonstrate that our cross-linked nanogels are 

able to transfer the loaded cargo inside the cells as shown in Figure 5.1. In this 

experiment, we co-encapsulate a FRET pair (DiI and DiO) in a nanogel and monitor the 

dye release inside MCF-7 cells which is known to have high levels of GSH. When the 
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FRET pair is stably encapsulated in the network interior, FRET (red color) will be 

observed, while the disappearance of FRET (more yellow) is an indication of dye 

release. As shown in Figure 5.1, both nanogels having 6% and 27% cross-linking 

display the ability to enter into cells and that the release kinetics are controlled by the 

cross-linking density. The 6% cross-linked nanogels release its cargo faster than 27% 

cross-linked nanogels.  

 

Figure 5.1: Confocal microscopy images of nanogels containing DiI and DiO at 4h and 
24h incubation times: a) 6% cross-linked nanogels; b) 27% cross-linked nanogels. 

Overall, the polymer nanogels developed by us hold great potential for drug 

delivery especially for chemotherapeutics. The in vivo delivery of cancer drugs such as 

doxorubicin to the breast cancer animal models is under investigation.  
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5.2.2 Cross-linked Nanogels with Cross-linker Modification 

In this dissertation, we elaborate on the development of self-cross-linked 

polymer nanogels using disulfide self-cross-linking reaction by holding the amphiphilic 

polymer aggregation to create stable nanoparticles with hydrophobic encapsulation 

capabilities. Although, the nanogels based on disulfide cross-linker can be cleaved by 

biological reducing agents to release their loaded cargo in a controlled fashion, it is also 

interesting to explore other types of cross-linkers that repond to various external stimuli 

such as pH, enzymes, and proteins.  

 

Figure 5.2: The polymer structures and cross-linked nanogels with modified cross-
linkers. 

To accomplish this, we hypothesize that if the cross-linking reaction occurs 

during the aggregation of amphiphilic polymers, then it would facilitate the nanogel 

formation and also provide lipophilic encapsulation in aqueous medium. To test this 

concept, the designed amphiphilic polymers will consist of the reactive ester groups that 

can be easily replaced by the cross-linker containing diamine functionalities. The cross-

linking reaction will take place during the polymer aggregation. Using this concept, we 

can introduce various types of cross-linkers in the nanogel scaffolds. Two polymer 

systems are currently investigated in our research group.  
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In the first design, we chose N-hydroxysuccinimide (NHS) as the reactive esters 

to be incoported on the polymer pruecusors. We synthesized the amphiphilic ramdom 

copolymers containing 30% PEG, 60% NHS, and 10% of PDS groups. The polymer 

structure is shown in Figure 5.2. After initiating the nanogel formation with small 

amount of disulfide cross-linking reaction, the diamino cross-linker will be added to 

react with NHS groups to generate fully cross-linked polymer nanogels. By this 

methodology, we can incorporate various types of cross-linkers containing diamine 

functionalities for specific targeted external stimulus. We are currently optimizing this 

system with acetal cross-linker containing diamines to prepare cross-linked nanogels 

that respond to acidic condition. 

In the second design, the pentafluorophenyl (PFP) ester will be used as an 

activated ester which is known to be replaced with amines with great fidelity. While the 

reactivity of PFP with amines is similar to the known NSH ester, it provides more 

hydrophobicity rendering the polymer precursors to form a stable aggregation without 

using initial disulfide bonds.  

 

Figure 5.3: The PEG-PFP polymer structure and cystamine cross-linked nanogels. 

In this design, we synthesize a random copolymer comprising PEG and PFP 

units as illustrated in Figure 5.3. While the PEG groups are charge neutral water soluble 
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units, PFPs are hydrophobic groups providing lipophilic encapsulation and are also 

reactive towards cross-linking amine groups. The addition of the cross-linker containing 

diamines to the stable polymer aggregation would result in stable cross-linked polymer 

nanogels. We are currently studying this system with cystamine and alkyldiamine cross-

linkers. Initial findings indicate that the PEG-PFP polymers form stable self- assembies 

and provide lipophilic encapsulation. We are able to cross-link them with cystamine and 

alkyldiamine cross-linkers affording highly stable cross-linked polymer nanogels. We 

will ultilize this method to incorporate other cross-linker containing diamine units.  

5.3 Summary 

In this chapter, we summarize the key points detailed in each chapter and 

present the ongoing work in our laboratory on the self-cross-linked polymer nanogels. 

We hope that the findings of this dissertation on the new class of self-cross-linked 

polymer nanogels provide insights for the development of effective nanoscopic drug 

delivery vehicles with high stability of non-covalent lipophilic drug encapsulation.  
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